已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一 知识回顾 一般地 设函数y f x 在x x0及其附近有定义 如果f x0 的值比x0附近所有各点的函数值都大 我们就说f x0 是函数的一个极大值 记作y极大值 f x0 x0是极大值点 如果f x0 的值比x0附近所有各点的函数值都小 我们就说f x0 是函数的一个极小值 记作y极小值 f x0 x0是极小值点 极大值与极小值统称为极值 1 函数极值的定义 1 在定义中 取得极值的点称为极值点 极值点是自变量 x 的值 极值指的是函数值 y 注意 2 极值是一个局部概念 极值只是某个点的函数值与它附近点的函数值比较是最大或最小 并不意味着它在函数的整个的定义域内最大或最小 3 函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 4 极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值 如下图所示 是极大值点 是极小值点 而 3 用函数的导数为0的点 顺次将函数的定义区间分成若干小开区间 并列成表格 检查f x 在方程根左右的值的符号 求出极大值和极小值 2 求函数f x 的极值的步骤 1 求导数f x 2 求方程f x 0的根 x为极值点 注意 如果函数f x 在x0处取得极值 就意味着 观察右边一个定义在区间 a b 上的函数y f x 的图象 发现图中 是极小值 是极大值 在区间上的函数的最大值是 最小值是 问题在于如果在没有给出函数图象的情况下 怎样才能判断出f x3 是最小值 而f b 是最大值呢 函数的最大值与最小值 二 新课讲授 1 最值的概念 最大值与最小值 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最大值 最值是相对函数定义域整体而言的 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最小值 1 在定义域内 最值唯一 极值不唯一 注意 2 最大值一定比最小值大 2 如何求函数的最值 1 利用函数的单调性 2 利用函数的图象 3 利用函数的导数 如 求y 2x 1在区间 1 3 上的最值 如 求y x 2 2 3在区间 1 3 上的最值 2 将y f x 的各极值与f a f b 比较 其中最大的一个为最大值 最小的一个为最小值 1 求f x 在区间 a b 内极值 极大值或极小值 3 利用导数求函数f x 在区间 a b 上最值的步骤 注意 若函数f x 在区间 a b 内只有一个极大值 或极小值 则该极大值 或极小值 即为函数f x 在区间 a b 内的最大值 或最小值 例1 求函数f x x2 4x 6在区间 1 5 内的最大值和最小值 解 f x 2x 4 令f x 0 即2x 4 0 得x 2 3 11 2 故函数f x 在区间 1 5 内的最大值为11 最小值为2 三 数学应用 例2 解 令 解得 x 0 0 0 0 四 课堂练习 课本p33练习no 1 2 3 五 课堂小结 1 最值的概念 最大值与最小值 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最大值 最值是相对函数定义域整体而言的 如果在函数定义域i内存在x0 使得对任意的x i 总有f x f x0 则称f x0 为函数f x 在定义域上的最小值 1 在定义域内 最值唯一 极值不唯一 注意 2 最大值一定比最小值大 2 求函数最值的常用方法 1 利用函数的单调性 2 利用函数的图象 3 利用函数的导数 如 求y 2x 1在区间 1 3 上的最值 如 求y x 2 2 3在区间 1 3 上的最值 3 用导数求函数f x 的最值的步骤 2 将y f x 的各极值与f a f b 比较 其中最大的一个为最大值 最小的一个为最小值 1 求f x 在区间 a b 内极值 极大值或极小值 注意 若函数f
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年觅春的试题及答案
- 2025年小学二年级英语上学期单词拼写测试卷
- 2025年运营求职笔试题及答案
- 2025年青蛙考试题及答案
- 2025年讲话稿试题及答案
- 2025年小学五年级科学下学期科学报告练习卷
- 2025年小学六年级音乐上学期音乐创作测试卷
- 个人简历模版(三页)带封面(可编辑)带实习和教育经历
- 工程图样公差标准解析与应用
- 2025空调租赁合同范文
- 2025至2030中国固态功率控制器(SSPC)行业发展趋势分析与未来投资战略咨询研究报告
- (全册各类齐全)二年级数学上册100道口算题大全23份(100题)
- 小学生防欺凌课件
- 2025-2030年中国特种气体行业市场深度调研及发展战略与前景展望研究报告
- 发错药的不良事件讲课件
- 2025年四川省泸州市中考道德与法治真题(原卷版)
- 公司挂靠安全协议书
- 【MOOC答案】《光纤光学》(华中科技大学)章节作业期末慕课答案
- 2025-2030年中国铜精粉产业营运走势与投资前景展望研究报告
- DB37-T5321-2025 居住建筑装配式内装修技术标准
- 深圳协议二手车合同模板
评论
0/150
提交评论