




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.2椭圆的几何性质(一)学 习 目 标核 心 素 养1.根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形.2.根据几何条件求出曲线方程,并利用曲线的方程研究它的性质、图形(重点、难点)通过椭圆几何性质的学习,培养学生直观想象,数学运算素养.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上标准方程1(ab0)1(ab0)图形对称性对称轴x轴和y轴,对称中心(0,0)范围xa,a,yb,bxb,b,ya,a顶点A1(a,0),A2(a,0),B1(0,b),B2(0,b)A1(0,a),A2(0,a),B1(b,0),B2(b,0)轴长短轴|B1B2|2b,长轴|A1A2|2a焦点F1(c,0),F2(c,0)F1(0,c),F2(0,c)焦距|F1F2|2c离心率e(0e1)思考1:椭圆上的点到焦点的最大距离与最小距离分别是什么?提示最大距离:ac;最小距离:ac.思考2:椭圆方程1(ab0)中a,b,c的几何意义是什么?提示在方程1(ab0)中,a,b,c的几何意义如图所示即a,b,c正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形1(2018全国卷)已知椭圆C:1的一个焦点为(2,0),则C的离心率为()A.B.C. D.C不妨设a0,因为椭圆C的一个焦点为(2,0),所以c2,所以a2448,所以a2,所以椭圆C的离心率e.2椭圆6x2y26的长轴端点坐标为()A(1,0)(1,0) B(6,0),(6,0)C(,0),(,0) D(0,),(0,)Dx21焦点在y轴上,长轴端点坐标为(0,),(0,)3椭圆1的焦距为2,则m_.3或5由题意得c1,当焦点在x轴上时,m41得m5,当焦点在y轴上时,4m1解得m3.由椭圆方程求椭圆的几何性质【例1】求椭圆16x225y2400的长轴和短轴的长、离心率、焦点和顶点的坐标思路探究化为标准方程,确定焦点位置及a,b,c的值,再研究相应的几何性质解把已知方程化成标准方程1,可知a5,b4,所以c3.因此,椭圆的长轴和短轴的长分别是2a10和2b8,离心率e,两个焦点分别是F1(3,0)和F2(3,0),椭圆的四个顶点是A1(5,0),A2(5,0),B1(0,4)和B2(0,4)解决此类问题的方法是将所给方程先化为标准形式,然后根据方程判断出椭圆的焦点在哪个坐标轴上,再利用a,b,c之间的关系和定义,求椭圆的基本量.1求椭圆9x2y281的长轴长、短轴长、焦点坐标、顶点坐标和离心率解椭圆的标准方程为1,则a9,b3.c6,长轴长2a18,短轴长2b6,焦点坐标为(0,6),(0,6),顶点坐标为(0,9),(0,9),(3,0),(3,0),离心率e.由椭圆的几何性质求椭圆的标准方程【例2】求适合下列条件的椭圆的标准方程: (1)长轴长是10,离心率是;(2)在x轴上的一个焦点,与短轴两个端点的连线互相垂直,且焦距为6.思路探究先判断焦点位置并设出标准方程,再利用待定系数法求参数a,b,c.解(1)设椭圆的方程为1(ab0)或1(ab0)由已知得2a10,a5.e,c4.b2a2c225169.椭圆方程为1或1.(2)依题意可设椭圆方程为1(ab0)如图所示,A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且|OF|c,|A1A2|2b,cb3,a2b2c218,故所求椭圆的方程为1.利用性质求椭圆的标准方程,通常采用待定系数法,而其关键是根据已知条件确定其标准方程的形式并列出关于参数的方程,解方程(组)求得参数提醒:当椭圆的焦点位置不确定时,通常要分类讨论,分别设出标准方程求解,可确定类型的量有焦点、顶点;而不能确定类型的量有长轴长、短轴长、离心率、焦距2求满足下列各条件的椭圆的标准方程(1)已知椭圆的中心在原点,焦点在y轴上,其离心率为,焦距为8;(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为.解(1)由题意知,2c8,c4,e,a8,从而b2a2c248,椭圆的标准方程是1.(2)由已知得从而b29,所求椭圆的标准方程为1或1.求椭圆的离心率探究问题1求椭圆离心率的关键是什么?提示根据e,a2b2c2,可知要求e,关键是找出a,b,c的等量关系2a,b,c对椭圆形状有何影响?提示(1)e.(2)【例3】已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若ABF2是正三角形,求该椭圆的离心率思路探究由题设求得A、B点坐标,根据ABC是正三角形得出a,b,c的关系,从而求出离心率解设椭圆的方程为1(ab0),焦点坐标为F1(c,0),F2(c,0)依题意设A点坐标为,则B点坐标为,|AB|.由ABF2是正三角形得2c,即b22ac,又b2a2c2,a2c22ac0,两边同除以a2得220,解得e.1(变换条件)本例中将条件“过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若ABF2是正三角形”改为“A为y轴上一点,且AF1的中点B恰好在椭圆上,若AF1F2为正三角形”如何求椭圆的离心率?解设椭圆的方程为1(ab0),焦点坐标为F1(c,0),F2(c,0),设A点坐标为(0,y0)(y00),则B点坐标为,B点在椭圆上,1,解得y4b2,由AF1F2为正三角形得4b23c2,即c48a2c24a40,两边同除以a4得e48e240,解得e1.2(变换条件)“若ABF2是正三角形”换成“椭圆的焦点在x轴上,且A点的纵坐标等于短半轴长的”,求椭圆的离心率解设椭圆方程为1(ab0),F1(c,0),F2(c,0),由题意知A在椭圆上,1,解得e.求椭圆离心率的方法,(1)直接求出a和c,再求e,也可利用e求解.,(2)若a和c不能直接求出,则看是否可利用条件得到a和c的齐次等式关系,然后整理成的形式,并将其视为整体,就变成了关于离心率e的方程,进而求解. 1思考辨析(1)椭圆离心率越大,椭圆越圆()(2)1(ab0)与1(ab0)的焦距相等()(3)已知椭圆1的离心率e,则k的值为4或.()提示(1)离心率越大,椭圆越扁;离心率越小,椭圆越圆(2)(3)由e21,又因椭圆的焦点在x轴或在y轴上,所以有两个值当k1时,焦点在x轴上,a2k8,c2k1,又e,所以,解得,k4;当8k1时,焦点在y轴上,a29,c21k,又e,所以,解得k.2已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()A.1B.1C.1 D.1Dc1,由e得a2,由b2a2c2得b23.所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年事业单位工勤技能-广东-广东工程测量工三级(高级工)历年参考题库典型考点含答案解析
- 2020-2025年二级造价工程师之土建建设工程计量与计价实务高分通关题型题库附解析答案
- 2020-2025年高级经济师之工商管理高分通关题库A4可打印版
- 2025年中级卫生职称-主治医师-精神病学(中级)代码:340历年参考题库典型考点含答案解析
- 2025年驾驶证考试-货车理论考试-货车驾驶证(科目一)历年参考题库含答案解析
- 2025年通信专业技术-通信专业技术(中级)-中级通信专业技术(交换技术实务)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-铁路职业技能鉴定-铁路职业技能鉴定(铁路接触网工)技师历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-热工职业-热工自动装置检修职业技能鉴定(中级)历年参考题库含答案解析(5套)
- 2025年职业技能鉴定-供水供应工-供水供应工证(中级)历年参考题库含答案解析(5套)
- 2025年综合评标专家-海南-海南综合评标专家(工程勘察、工程设计类)历年参考题库含答案解析(5套)
- 全业务竞争挑战浙江公司社会渠道管理经验汇报
- 护理副高职称答辩5分钟简述范文
- 幼小衔接资料合集汇总
- GB/T 42195-2022老年人能力评估规范
- GB/T 4909.4-2009裸电线试验方法第4部分:扭转试验
- GB/T 15155-1994滤波器用压电陶瓷材料通用技术条件
- 复变函数与积分变换全套课件
- 做一名优秀教师课件
- 企业标准编写模板
- 商场开荒保洁计划书
- DBJ 53-T-46-2012 云南省城镇道路及夜景照明工程施工验收规程
评论
0/150
提交评论