DDL型叶片结构与工艺设计—DDL型叶片结构设计开题报告1_第1页
DDL型叶片结构与工艺设计—DDL型叶片结构设计开题报告1_第2页
DDL型叶片结构与工艺设计—DDL型叶片结构设计开题报告1_第3页
DDL型叶片结构与工艺设计—DDL型叶片结构设计开题报告1_第4页
DDL型叶片结构与工艺设计—DDL型叶片结构设计开题报告1_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎下载本文档参考使用,如果有疑问或者需要CAD图纸的请联系q1484406321编号无锡太湖学院毕业设计(论文)相关资料题目: DDL型叶片及结构设计与工艺设计 DDL型叶片结构设计 信机 系 机械工程及自动化专业学 号: 0923191学生姓名: 邵亦飞 指导教师: 宋广雷(职称:副教授) 2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: DDL型叶片结构与工艺设计 DDL型叶片结构设计 信机 系 机械工程及自动化 专业学 号: 0923191 学生姓名: 邵亦飞 指导教师: 宋广雷 (职称:副教授 ) 2012年11月12日 课题来源实验室课题科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义叶片结构设计是风力机设计工作的一项重要环节,特别是对于大中型风力机其意义更为重大风力机经常运行于海边或偏僻的山顶野外,环境严酷在我国某些地区运行的风力发电机组要承受更恶劣的环境条件,如东南沿海地区经常发生台风,中国北方冬季的低温等等目前我国运行的风力机依然主要从国外进口,这些风力机不完全适应于我国的气候条件,以至于风电设备损坏和故障时有发生,这就要求我们必须对风力机叶片进行结构分析,找出其最易损坏的部位,为设计提供一种依据,从而不断改进叶片适应不同环境的能力因此,本课题的研究将对国产化风力发电机组自主设计开发工作起到一定作用。(2)叶片结构设计的研究现状和发展前景目前,国内对风力机叶片结构设计的研究相对较少,基本的研究都是将叶片当作悬臂梁来进行应力、应变、变形等计算,来验证叶片设计的合理性,由于是按照经典理论进行计算,因此计算十分繁琐,而且所做的简化过多,一定程度上影响叶片的设计质量对风力机.叶片结构分析方面,主要是对叶片的动力学分析,而叶片动力学分析集中在模态计算而很少对叶片进行稳定性分析(屈曲分析)。根据可再生能源中长期发展规划(2010一2020年),我国将通过大规模的风电开发和建设,促进风电技术进步和产业发展,实现风电设备制造自主化,尽快使风电具有市场竞争力在经济发达的沿海地区,发挥其经济优势,在三北(西北、华北北部和东北)地区发挥其资源优势,建设大型和特大型风电场,在其他地区,因地制宜地发展中小型风电场,充分利用各地的风能资源。 研究内容 在已有气动设计数据的基础上,对某风力机叶片进行了详细的结构设计,包括载荷的计算、材料的选用、结构形式的确、铺层设计等; 讨叶片有限元模型的建立方法,利用各截面翼型数据,借助参数化语启一程序实现几何模型的建立!复合材料铺层的模拟以及划分网格建立有限元模型; 在对叶片进行前处理的基础上,本文将根据有限元分析理论进行叶片的强度、刚度、模态和稳定性分析,得到其应力、应变、振型、频率等相关参数,校核其是否满足设计要求;叶片的动力学分析本文基于气动弹性理论,通过动力学基本方程的建立,利用ANSYS有限元分析软件对叶片进行振动模态分析,可以很容易得到叶片的多阶固有频率和振型,结合叶片断裂的问题分析,为叶片的结构设计提供了参考依据。拟采取的研究方法、技术路线、实验方案及可行性分析(1)实验方案 考虑叶片实际连接情况,将其视为刚性连接,对叶片根部采用全约束简化为悬臂梁进行强度和刚度分析考虑到叶片模型为壳体结构,通过将计算的弯矩载荷等效为线性分布力载荷的方案进行加载,最终进行叶片强度和刚度分析通过分析发现其叶尖位移变形最大,叶根应力最大,但均未超过极限值,设计符合要求(2)研究方法在载荷计算和加载过程中,通过软件模拟风况与实际风况具有一定差别,加载方式采用将计算弯矩等效为线性载荷的方式施加于有限元模型上, .对叶片进行稳定性分析时将叶片结构看作理想弹性体结构而未考虑初始缺陷及材料非线性、大变形等非线性因素的影响。研究计划及预期成果研究计划:2012年10月13日-2012年12月20日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2013年1月11日-2013年3月5日:填写毕业实习报告。2013年3月7日-2013年3月15日:按照要求修改毕业设计开题报告。2013年3月17日-2010年3月21日:学习并翻译一篇与毕业设计相关的英文材料。2013年3月22日-2013年4月11日:叶片载荷工况计算。2013年4月12日-2013年4月25日:叶片铺层设计。2013年4月26日-2013年5月21日:毕业论文撰写和修改工作。预期成果:对风力机风轮叶片结构设计方法的分析研究,得出了通过有限元分析软件进行优化铺层的设计分析方法,并且本文首次将有限元屈曲分析方法用于风力机叶片稳定性分析计算中,并取得了一定效果,同时采用命令流的方式进行叶片的屈曲分析,提高了效率为今后这方面的工作起了抛砖引玉的作用。特色或创新之处 综合国内外多种文献,整理现有叶片模型基础上,对叶片的制造工艺发展进行了总结,根据所选材料的不同对叶片进行了分类,特别分析了叶片剖面的结构。 考虑叶片实际连接情况,将其视为刚性连接,对叶片根部采用全约束简化为悬臂梁 进行强度和刚度分析考虑到叶片模型为壳体结构,通过将计算的弯矩载荷等效为线性分布力载荷的方案进行加载,最终进行叶片强度和刚度分析。已具备的条件和尚需解决的问题 对叶片进行强度和刚度分析时,可对更多载荷工况的组合进行分析,比较不同因素对叶片应力、应变的影响,更好地对设计提供理论依据 本文只是针对单叶片进行了模态分析,待整个风轮甚至整个风力机结构设计完整后,应该进一步得到风轮的模态振型,其他关键机构的动力学分析,这样可以分析整个系统的共振情况且得到的结果更接近实际。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文 DDL-type blade structure and process designEnergy is an important material foundation for economic and social development. Since the industrialization of society, world soaring energy consumption, coal, oil, natural gas and other fossil energy resources consumption rapidly, ecological environment is deteriorating, especially greenhouse gas emissions, leading to increasingly serious global climate change, sustainable development of human society by the Yan Zhongwei coerce. With the development of human society, the progress of science and technology and the increasingly serious resources and environmental problems and challenges, the world energy structure began to experience the third major changes, namely energy system mainly from coal, oil, natural gas, began to shift to renewable energy source system based.Wind energy is a clean renewable energy, according to the World Meteorological Organization (WMO) analysis, the total global wind energy is 3xlo, the.Kw, which can make use of wind energy is 2xlo, kw. Therefore, the development and utilization of wind energy resources, not only can look for new alternative energy, but also conducive to environmental protection solar radiation of the earth the approximately 20% into the wind, the global wind energy if 1% is used to generate power, can meet all the energy consumption wind is the earth and natural resources, as a renewable green energy, because of its enormous commercial potential and environmental benefits, in the global new energy and renewable energy has achieved the fastest growth in the last 10 years, the development of wind power continue beyond its development speed is expected, and always keep the worlds fastest-growing energy status since 2000, wind power installed the installed capacity of the average annual growth rate of 26.3% of the world. According to the Danish BTM report, in 2005 the world new wind power installed capacity of 11407MW, t, 3253MW increase over the previous year, an increase of 40%; new wind power a total investment of 12000000000 euros toeuros, by the end of 2005, the worlds wind power installed capacity of 59263Mw, year-on-year growth of 24%9 at present, there have been 48 countries the enactment of relevant laws and regulations to support the development of renewable energy, the important function of policies and regulations on wind power development。 Wind turbine blade is the most basic and most important part of the wind turbine, its good design! Reliable quality and superior performance is guaranteed by design factors normal stable operation of wind turbines from the perspective of the wind wheel blades plays an inestimable role in the wind turbine. Design of wind turbine blades based on the theory and its correction theory have many design and calculation methods are mainly: Bates theory, SCHMITZ theory,.GLAUERT model and Wilson model which simplify the design theory is based on the theory of disc, principle and model of the most simple, but because the simplified factors more, so the design precision, in the design of small wind turbine is you can use Sc and MITZ; theory, GLAUERT model and WNSON model based on the vortex theory, design accuracy is relatively high, suitable for the design of large wind turbine design; now the design model vortex theory such as GLAUERT theory considering the wind wheel of the vortex flow based on the theory of leaves, but ignore the influence of blade airfoil drag and leaf loss; Wilson theory to make the improvement to the GLAUERT theory, the influence of tip loss and optimal performance resistance ratio to the blade, the wind wheel at off-design performance, are also studied. Therefore, the theory is widely used to calculate the aerodynamic performance of blade. Wind turbine design is a comprehensive technology involving aerodynamics, structural dynamics meteorology! Of mechanical and electrical engineering, automatic control computer! the professional technology in China to design technology of wind machine mainly carried on the wind turbine aerodynamic design and calculation method, calculation of structural dynamic analysis of wind turbine and method, GRP wind turbine blade design method of wind turbine, variable speed constant frequency technology, automatic control technology of wind turbine, wind machine (limited) speed characteristics, wind machine to the characteristics of wind turbine, computer aided design and software development, has made rapid progress In recent years, engineering designers tend to take to limit use of structural materials, making all kinds of structure is more and more light, in order to increase the payload, to obtain greater economic benefits but in this way, the structure of flexible structure vibration induced by fluid flow increases, the serious with the development of science and technology, components of velocity and the dynamic mechanical vehicle running faster and faster, the ground building structure is more and more high, the span of the bridge is also more and more big, blade of wind turbine is becoming longer and longer, in the role of air power of the thin-walled parts are elastic body good, easy to deformation and serious chatter that the structure and flow of lotus root vibration problems are growing. With the development of wind turbine blade, the research is mainly focused on the research and analysis of the structure of blade airfoil the impeller blades to meet the air dynamics based on KLARK has designed a Y type, NACA type, FX type, double feather blade in the domestic wind turbine airfoil, the most representative is NACA series. Study on new airfoil rarely due to the geometrical parameters and the lack of dedicated the new wind turbine type dynamic performance parameters, which directly affects the large-scale wind turbine pneumatic design level for airfoil development, in recent years, with the development of computational fluid dynamics (CFD) level, various methods of blade geometry optimization of began to appear, by using the numerical method, the aerodynamic parameters of each section to determine accurately the implementation in a certain output power under the optimum blade geometry and aerodynamic design in the aerodynamic design of new methods can be divided into two categories: one is the direct numerical optimization method, referred to as the optimization design method, it will be CFD the same optimization methods combined, extreme to seek the objective function by constantly modify the geometry of the other is the inverse design method, it is first given desired aerodynamic condition (such as pressure distribution, geometry and flow through) The control equations, gradually approaching the given aerodynamic condition, satisfies the given flow field obtained aerodynamic airfoil, which overcomes the shortcomings of traditional airfoil design method. Structure analysis, including analysis, dynamic stability analysis, fatigue analysis analysis mostly by classical method similar to the helicopter wing blade aerodynamic characteristics, considering the out-of-plane waving! In-plane shimmy and the torsion no pre - cone torsional mode combined HOUBOLT and Brooks is not a torsional degrees of freedom coupling the differential equations of motion (Sichuan of some nonlinear terms on the aeroelastic effects are important with uniform blade, researchers at home and abroad according to certain physical assumptions to simplify the complex physical problems, developed many simplified method of engineering model, derived with nonlinear term in the equation of motion is derived for WENDEN the wind wheel blade aerodynamic load, with the non - coupling non rotation mode on the aeroelastic stability problem 351, rotation mode K TTAPALLI with non - coupling is studied on the problem, in the process of calculation, ignoring the effect of coupling of blade and tower, on line processing the non-linear equation, the static response and stability of the wind turbine blade boundary, compared with the results of conservative. Using a nonlinear semi rigid model of the blade aerodynamic nonlinear equations of motion of elastic response and stability problems of Li Benli and An Yuhua set up a wind turbine rotor blade aeroelastic stability problem (a7CHOPRA and DUGUNDI Miller with semi-rigid model study of wind wheel for gas, with using the mode method! Shimmy! Turn differential equation and application of the numerical the results of wind turbine aeroelastic stability analysis. Cao Renjing! Liu Ming established the law of horizontal axis wind turbine aeroelastic stability of physical and mathematical model of sensitivity analysis method based on comprehensive consideration of the gas pressure, the wind wheel of the influence of dynamic and structural parameters on the aeroelastic stability From the process of making blade speaking, the current high! And medium-sized fan blade basically form the skin and girders, by multi step forming process of preparation, which were making blades! Under the shell and keel beam (WEB), then stick together due to the bonding strength at the far below the shell itself strength, make the blade housing property can not be brought into full play, leaf Keyi similar thin-walled open section beam is far less than the carrying capacity of thin-walled beam single web support failure (4s, multiple beam or the web should add more die which will undoubtedly increase the cost, reduce the utilization ratio of the blade. therefore, if the overall shape of preparation of hollow blade, which can effectively reduce weight, reduce the cost, improve the overall mechanical properties of blade, which requires the limit analysis of this new leaf structure and on the basis of the reasonable design, because the traditional blade to keel beam (WEB) the main bearing member.Large wind turbine blades are mostly uses the assembly manufacturing, respectively in the two female die forming blade skin, are respectively formed on special molds girder and other glass steel components, and then to the master molds to two skins! Beam and other components of the adhesive are assembled together, clamping pressure solidified to form integral blade molding process of FRP blade are: hand lay-up! Vacuum assisted injection! Resin transfer molding (RTM) process of impregnation! Scrimp! Laying process fiber winding art FW, fiber (FP)! Wood fiber epoxy saturation process (WWEST)! Molding process, these methods have different emphases. Hand lay-up process: belongs to the traditional blade molding process, also known as wet forming, the fiber substrate laying in single mode, and then use the roller or brush coated glass cloth and resin, curing at room temperature after stripping, the manual labor, low cost, low cost for complex shape product! Dry forming is an emerging technology first, the fabric prepreg, field placement, heating (or normal) pressure curing, high production efficiency, initiated by the Danish company Vestas and a large amount of resin transfer molding (RTM): blade molding method belongs to the latest development, the preform is placed in the mold cavity, injecting resin warm forming the method is the low cost of the world recognized method of manufacture, development is rapid, wide application, and is derived from a variety of methods, mainly the production of large blade by using VARTM and SCRIMP method VARTM vacuum assisted grouting technology in recent years by improved RTM process for development of the application of vacuum the high permeability medium, to guide the resin is injected into the structure layer, used for large product complex abroad has been applied in the molding of large glass steel products, in China, due to the market, technology, material! Restrictions and effects of capital,。 Composite blade manufacturers use wet lay-up process, this process has been difficult to achieve large-scale wind turbine blade of megawatt, VARTM is the new technology to solve the problem of Shanghai FRP Research Institute in the development of IMW wind turbine blades with the process, through many experiments, exploring a series of technical problems are solved vacuum cloth tube, control, resin selection, stacking fold, the technical level of blade molding process has been greatly improved filament winding process: from the composite pipe winding forming process, compared with other kinds of forming process, high product strength, stable quality, good repeatability. The technical parameters of main relates to fiber winding tension control, speed and winding angle control as the non-rotating structural characteristics of typical blade, using the method of linear design of complex, high cost, needs further development in summary, manufacturing processes are more integrated diversification, the direction of development, in addition to process described above outside, there are hot melt epoxy prepreg, rigid foam foaming and multiaxial layer technology at present, foreign advanced technology industries, and RTM process in China is still in the experimental stage中文译文 DDL型叶片结构与工艺设计能源是经济和社会发展的重要物质基础。社会工业化以来,世界能源消费剧增,煤炭、石油、天然气等化石能源资源消耗迅速,生态环境不断恶化,特别是温室气体排放导致日益严峻的全球气候变化,人类社会的可持续发展受到严重威胁。随着人类社会的发展、科技的进步以及日益严重的资源和环境问题的挑战,世界能源结构开始经历第三次大的变革,即从煤炭、石油、天然气为主的能源系统,开始转向以可再生能源为基础的能源系统。 风能是一种清洁的可再生能源据世界气象组织(WMO)分析,全球总风能为3xlo,.kw,其中可利用的风能为2xlo,kw。因此,开发和利用风能资源,不仅可以寻找新的替代能源,而且有利于环境保护地球接受的太阳辐射能大约有20%转化成风能,全球风能总量如果1%用来发电,就能满足全部能源消耗风能是地球与生俱来的资源,作为可再生的绿色能源,凭借其巨大的商业潜力和环保效益,在全球的新能源和可再生能源行业中创造了最快增速在过去的10年间,风电发展不断超越其预期的发展速度,而且一直保持着世界增长最快的能源的地位2000年以来,全球风电装机容量年平均增长率为26.3%。根据丹麦BTM报告,2005年全世界新增风电装机容量11407MW,t比上年增加了3253MW,增长了40%;新增风电总投资达120亿欧元至140亿欧元截至2005年底,世界风电装机容量为59263Mw,同比上年增长24%9目前,己有48个国家颁布了支持可再生能源发展的相关法律法规,政策法规对风电发展起到了至关重要的作用 风力机叶片是风力机中最基础和最关键的部件,其良好的设计!可靠的质量和优越的性能是保证风力发电机组正常稳定运行的决定因素从这一层面上讲风轮叶片的设计在风力发电机组中占有不可估量的地位。风力机叶片设计根据不同的理论及其修正理论有许多设计计算方法目前主要有:贝茨理论,SCHMITZ理论.GLAUERT模型和Wilson模型其中简化设计理论是基于圆盘理论,原理及模型最简单,但因简化因素较多,故设计精度较差,在设计小型风力机是可以采用;Sc加MITZ理论、GLAUERT模型和WNSON模型基于涡流理论,设计精度相对较高,适合于设计大型风力机;现在设计多采用基于涡流理论的设计模型如GLAUERT理论考虑了风轮后涡流流动的叶素理论,但忽略了叶片翼型阻力和叶梢损失的影响;Wilson理论对GLAUERT理论作了改进,研究了梢部损失和升阻比对叶片最佳性能的影响,还研究了风轮在非设计状态的性能,因而,该理论广泛用于叶片气动性能的计算. 风力机设计是一门综合技术,涉及到空气动力学!结构动力学!气象学!机电工程!自动控制!计算机等专业技术我国对风力机设计技术主要进行了风力机空气动力设计和计算方法,风力机结构动力计算和分析方法,风力机玻璃钢叶片设计方法,风力机变速恒频技术,风力机自动控制技术,风力机调(限)速特性,风力机调向特性,风力机计算机辅助设计和软件包开发等研究工作,取得了较快的进展 近年来,工程设计师们都倾向于把结构材料利用到极限,使得各种结构越来越轻巧,以增加有效载荷,从而获得更大的经济效益但这样一来,结构的挠性就增大,气流诱发的结构振动就严重了随着科学技术的普遍发展,飞行器的速度及其动力机械部件运转的速度越来越快,地面建筑结构越来越高,桥梁跨度也越来越大,风力发电机组叶片越来越长,在空气动力作用下这些薄壁件都是很好的弹性体,极易变形而出现颤振即结构与气流藕合振动问题的严重性在不断增长. 随着风力机的发展,叶片的研究主要是集中在叶片翼型的研制和结构分析其中叶轮叶片在满足空气动力学的基础上已设计出KLARK一Y型、NACA型、FX型、双羽型叶片在国内,风力机翼型最有代表性的是NACA系列.对新翼型的研究很少由于缺乏风力机专用新翼型的几何参数和气动性能参数,这也

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论