椭圆及其标准方程教案(长沙县二中李艳梅).doc_第1页
椭圆及其标准方程教案(长沙县二中李艳梅).doc_第2页
椭圆及其标准方程教案(长沙县二中李艳梅).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

椭圆及其标准方程(第一课时)一、教学目标学习椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;能根据条件确定椭圆的标准方程,掌握用待定系数法求椭圆的标准方程。二、教学重点、难点(1)教学重点:椭圆的定义及椭圆标准方程,用待定系数法和定义法求曲线方程。(2)教学难点:椭圆标准方程的建立和推导。三、教学过程(一)创设情境,引入课题生活部中的椭圆模型(二)合作探究,形成概念1、动手实验:学生分组动手画出椭圆。实验探究:保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化?思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹?2、 概括椭圆定义M引导学生概括椭圆定义椭圆定义:平面内与两个定点距离的和等于常数(大于)的点的轨迹叫椭圆。教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。思考:焦点为的椭圆上任一点M,有什么性质?令椭圆上任一点M,则有思考:当点M到F1、F2的距离之和不大于|F1F2|时,点M的轨迹是什么?结论:在平面上到两个定点F1,F2距离之和等于定值2a,即|MF1|MF2|2a,|时,点的轨迹为 ;=|时,点的轨迹为 ; 0 );选定方案二建立坐标系,由学生完成方程化简过程,可得出+=1,同样也有a2c2 = b2 ( b 0 )。教师指出:我们所得的两个方程+=1和+=1()都是椭圆的标准方程。(四)归纳概括,方程特征1、 观察椭圆图形及其标准方程,师生共同总结归纳(1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴;(2)椭圆标准方程形式:左边是两个分式的平方和,右边是1;(3)椭圆标准方程中三个参数a,b,c关系:;(4)椭圆焦点的位置由标准方程中分母的大小确定;(5)求椭圆标准方程时,可运用待定系数法求出a,b的值。2、 在归纳总结的基础上,填下表标准方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论