碳化硅陶瓷的烧结工艺.doc_第1页
碳化硅陶瓷的烧结工艺.doc_第2页
碳化硅陶瓷的烧结工艺.doc_第3页
碳化硅陶瓷的烧结工艺.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

碳化硅陶瓷的合成方法综述碳化硅陶瓷具有机械强度高 、耐高温 、抗氧化性强 、热稳定性能好 、热导率大 、耐磨损性能好 、耐化学腐蚀性能好 、硬度高 、抗热震性能好等优良的特性 。碳化硅是所有非氧化物陶瓷中抗氧化性能最好的一种 。碳化硅陶瓷不仅在高新技术领域发挥着重要的作用 ,而且在冶金 、机械 、能源和建材化工等热门领域也拥有广阔的市场 。随着高新技术的不断发展 ,对碳化硅陶瓷的要求也越来越高 ,需要不同层次和不同性能的各种产品。早在 20 世纪 50 年代 ,Popper 1 首次提出反应烧结制备碳化硅 。其基本原理是 :具有反应活性的液硅或硅合金 ,在毛细管力的作用下渗入含碳的多孔陶瓷素坯 ,并与其中的碳反应生成碳化硅 ,新生成的碳化硅原位结合素坯中原有的碳化硅颗粒 ,浸渗剂填充素坯中的剩余气孔 ,完成致密化的过程 。 11 常压烧结111 固相烧结 单一陶瓷粉体烧结常常属于典型的固相烧结,即在烧结过程 中没有液相形成。陶瓷坯体的致密化主要是通过蒸发和凝聚、扩散传质等方式来实现的。其烧结过程主要由颗粒重排、气孔填充和晶粒生长等阶段组成。同时,固相烧结可以通过合适的颗粒级配 、适当的烧结温度和较短的保温时间等工艺参数来实现致密化烧结 。自20世纪 7O年代,Prochazkal6在高纯度的SiC中加人少量的B和C作为烧结助剂 ,在 2050成功地固相烧结出致密度高于 98 的SiC陶瓷以来 ,固相烧结就一直很受关注。虽然 SiC-B-C体系固相烧结 SiC需要较高的烧结温度 ,烧结晶粒粗大,均匀性差,而且 SiC陶瓷具有较低的断裂韧性 、较高的裂纹强度敏感性和典型的穿晶断裂模式,但是固相烧结的烧结助剂含量低,杂质少,晶界几乎不残留低熔点物质,烧结后的SiC陶瓷高温稳定性好 、热导能力强l7剖。因此 ,固相烧结在 SiC陶瓷烧结中具有潜在的应用价值 。目前,采用 SiC-B-C烧结体系来进行固相烧结 SiC陶瓷的厂家主要有美国的GE公司。112 液相烧结 由于陶瓷粉体中总有少量的杂质 ,大多数材料在烧结过程中都会或多或少地出现液相 。另外,即使在没有杂质的纯固相系统中,高温下还会出现 “接触”熔融现象,因而纯粹的固相烧结实际上不易实现,大多数 的烧结实属液相烧结。液相烧结是以一定数量的多元低共熔点氧化物为烧结助剂,在高温下烧结助剂形成共溶液相的烧结过程 ,烧结 晶粒细小均匀呈等轴晶状。其烧结体系的传质方式为流动传质,可降低致密化所需要的能量 ,容易实现低温下的烧结致密化,缩短烧结时问。同时,低共溶液相的引入和独特的界面结合弱化,使材料的断裂模式为沿晶断裂模式,材料的断裂韧性和强度显著提高。Nakano等利用 BeO 的高热导能力以及SiC与 BeO在烧结过程中形成液相 的特点,最终制备 出热导率高达 270W (m K)的SiC陶瓷。Takada等在 2200烧结平均粉末粒径为05Fro的SiC陶瓷的过程中,加入烧结助剂 2 BeO、02 O4 BC和 02 O3 C(质量分 数),无压烧结 05h,获得材料的电阻率和热导率分别为 5l012Q cm和 140w(m K)。在烧结过程中,均匀分布在SiC表面的B原子和 C原子与 Si原子反应 ,生成 GB-C、Si-B-C、Si- Si和SiDSi键,促进 Si原子的扩散,提高SiC陶瓷的致密度。12 热压烧结热压烧结是指在 SiC加热烧结的同时,施加一定的轴向压力而进行的烧结 。热压烧结可增大 SiC粒子间接触面积,降低烧结温度 ,缩短烧结时间,增加烧结体的致密化 ,促进SiC烧结。为了使 SiC粒子更容易烧结,热压烧结通常需要在 SiC粉体中加入B、C、Al、B4C、Y2O3、A12O3。等烧结助剂来促进烧结 。B、Al或 BC固溶于 SiC中,降低 SiC的界面能 ,C主要与SiC粒子表面的 SiO。反应形成低温液相,促进B、A1的扩散。Liu等 以Y2O3和A12O3。为烧结助剂,在 2000、30MPa的烧结条件下进行烧结,烧结 出SiC陶瓷的致密程度为 97 993,而烧结过程 中Y2O3和A12O3生成热导率较低 的第二相 YAG,致使室温下的SiC的热导率仅为 92w (m K)。Zhuo等 在 2000、40MPa条件下,以Y 和La03为烧结助剂热压烧结 SiC陶瓷2h,获得热导率为 166W (m K)的陶瓷基片,一方面,所添加的 YO。具有驱氧能力,从而净化 晶格 ,减少晶格缺陷,增大 晶粒纯度 ,提高热导率;另一方面,以LaO。代替A1O 可以确 保 Y。0。不形成低热导率 的YAG,提高其导热能力。热压烧结能很好地实现陶瓷烧结体 的致密化 ,是制备高性能 SiC陶 瓷材料的有效途径 ,但其工艺生产复杂 、设备 昂贵、成本高,难 以制造出形状复杂的SiC部件 ,不利于工业化生产 。13 反应烧结 反应烧结SiC是利用含 C粉和 SiC粉成型体与气相或液相 Si在高温下反应得到SiC的烧结体 。其烧结过程不 需要添加任何烧结助剂,晶粒中缺陷少,晶界纯度高,对材料的热导性能影响小。原料中的C与外部的 反应 ,一方面可以生成 SiC,另一方面引起致密化作用 ,反应烧结后烧结体 内的气孔进一步由Si填充,得到致密且收缩极小的烧结体,可应用于SiC电子陶瓷领域 。自20世纪 5O年代利用反应熔 渗烧结法制备 SiC陶瓷以来,为了减少材料 的结构缺陷并提 高材料的性能,研究者通过不断改进成型方式和改善工艺, 提高反应烧结的性能。刘红等_j将熔融态的Si通过毛细作 用渗入坯体 中与碳粉反应 ,新生成的SiC将原来 的SiC晶须和 SiC结合在一起 ,得到致密度高、缺 陷少 、弯 曲强度为 243MPa、断裂韧性值为 643MPa。、热导率为 1253w(m K)的SiC SiC复合材料。其与反应烧结的SiC (RB-SiC)陶瓷的性能列于表 1。目前,反应烧结 SiC陶瓷制 品主要有英国的UKAEA的Refel-SiC和美 国Carborundun公司的KT-SiC。国内在山东有数家厂家采用反应烧结制备 SiC陶瓷,生产工艺成熟,产品性能稳定 。 14 放电等离子烧结 放电等离子烧结是利用脉冲大电流直接施加于模具和 样品上加热,使被烧结样品快速升温而进行的烧结。放电等 离子烧结具有升温速度快 ,烧结速率快 、时间短,构成 的组织 成分可控性强,环保节能等鲜明优点,是一种具有广阔应用前景的制备技术 。在烧结过程 中SiC粉体 的烧结机理主要有:低温下是焦耳热和电场 的共同作用加速原子的扩散和物质的传输;高温下是放 电效应、焦耳热和 电场的共 同作用促 进原子的扩散和物质的传输。在烧结过程中,颗粒间的瞬间放电和高温等离子体可以破碎或去除粉体颗粒表面杂质和吸附的气体 ,活化粉体颗粒表面 ,提高烧结质量和效率。一些研究者 以SiC微粉为原料 ,添加质量分数为 10的 Y2O3和A12O3。(物质的量 比为 5:3)为烧结助剂,在 1600、50MPa、5min的烧结制度下,采用放电等离子烧结技术制备出SiC陶瓷烧结体,其致密度为 99O9 ;烧结体内SiC陶瓷晶粒尺寸为 12m,较好地控制了晶粒尺寸,很大程度上降低了烧结温度,减少了生产成本。 2. 结束语个人认为在上述的烧结方法中其中反应烧结最适合于制备碳化硅陶瓷。采用反应烧结工艺可以较为容易地实现大尺寸 、复杂形状的碳化硅制品的成形 ,并且可在低于传统制备工艺数百度的烧结温度下得到近乎完全致密的碳化硅陶瓷 。为了使 SiC陶瓷更能满足市场的发展需求 ,今后需在以下几个方面进行加强 :(1)优异 的SiC粉体能加大烧结推动力,实现陶瓷低温的致密化 。在 溶胶一凝胶法、自蔓延高温合成法、气相反应法和热分解法的基础上 ,进一步研发 出高效率 、低污染 的SiC粉体制备技术 。(2)目前,常压烧结出的SiC陶瓷致密度不高,综合性能不是很稳定,对于其烧结机理的研究还有待进一步深入,应提高其常压烧结效率 ,降低生产成本。(3)以SiC为增强相 的金 属基复合材料,将成为市场 的主体发展方向,共价键结合的SiC与金属之间的界面仍是 目前急需解决的问题。 参考文献1.王昕,田进涛先进陶瓷制备工艺M北京 :化学工业出版社 ,2009:125 2.武卫兵,靳正国碳化硅陶瓷的液相烧结及其研究进展J山东陶瓷,2002,25(1):143.吕振林,高积强,金志浩碳化硅陶瓷材料及制备J机械工程材料,1999,23(3):1 4.刘红,方敬忠 ,陈益 ,等反应烧结法制备 SiCp(w)/SiCp光学结构件复合材料J光电工程,2006,33(12):132 5.徐强,朱时珍,曹建岭,等SiC 陶瓷的SPS烧结机理的研究J稀有金属材料与工程,2007,36(增刊 1):341 6.张勇,何新波,曲选辉,等放电等离子烧结工艺制备致密SiCp口陶瓷J机械工程材料,2008,32(3):457.陈字红,杨和平,贾学荭 ,等碳化硅一二硼化钛复合材料烧结工艺研究J陶瓷学报,2010,31(1):29 8.华小珍 ,邹爱华,周贤 良,等电子封装材料 SiCpAl复合材料的制备与性能J铸造技术,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论