锐角三角函数复习课件_第1页
锐角三角函数复习课件_第2页
锐角三角函数复习课件_第3页
锐角三角函数复习课件_第4页
锐角三角函数复习课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第7章锐角三角函数复习 三角函数 一 基本定义 例1 如图 ABC中 AC 4 BC 3 BA 5 则sinA sinB cosA cosB tanA tanB 练习1 如图 在Rt ABC中 ACB 90 CD是斜边AB上的高 AB 7 AC 3 则cos BCD 练习2 Rt ABC中 C 900 求tanB cosA 正切值随着锐角的度数的增大而 正弦值随着锐角的度数的增大而 余弦值随着锐角的度数的增大而 增大 增大 减小 二 三角函数的增减性 异名函数化为同名函数 练习1 比较大小 1 sin250 sin430 2 cos70 cos80 3 sin480 cos520 4 tan480 tan400 练习2 已知 300 450 则 1 sin 的取值范围 2 cos 的取值范围 3 tan 的取值范围 三 特殊角的三角函数值 例1 计算 例2 已知 ABC满足则 ABC是 三角形 3 2sin30 tan45 cos60 1 在直角三角形中 利用已知的元素求出所有未知元素的过程 叫解直角三角形 2 知道直角三角形中的2个元素 至少有一边 可以求出其它三个元素 四 解直角三角形 例2 如图 在 ABC中 A 30 tanB AC 求AB的长 例1 在Rt ABC中 C 90 A 60 a b 解这个直角三角形 D 五 锐角三角函数的应用 似曾相识 1 某岛O周围40海里内布满暗礁 现有船由西向东航行 初测得船在A处时 此岛在北偏东600方向 航行30海里后测得此岛在东北方向 如图所示 如果船不改变航行方向继续航行 有无触礁危险 E 2 甲 乙两楼相距60米 从乙楼底部点D望甲楼的顶部点A仰角为600 从甲楼顶部点A望乙楼顶部的点C俯角为450 则甲 乙两楼的高度分别为多少 甲楼 A B C D 乙楼 E 600 450 似曾相识 3 如图所示 A B两城市相距100km 现计划在这两座城市间修筑一条高速公路 即线段AB 经测量 森林保护中心P在A城市的北偏东30 和B城市的北偏西45 的方向上 已知森林保护区的范围在以P点为圆心 50km为半径的圆形区域内 请问 计划修筑的这条高速公路会不会穿越保护区 为什么 参考数据 4 如图 港口B位于港口O正西方向120海里外 小岛C位于港口O北偏西60 的方向 一艘科学考察船从港口O出发 沿北偏东30 的OA方向以20海里 小时的速度驶离港口O 同时一艘快艇从港口B出发 沿北偏东30 的方向以60海里 小时的速度驶向小岛C 在小岛C用1小时装补给物资后 立即按原来的速度给考察船送去 2 快艇从小岛C出发后最少需要多少时间才能和考察船相遇 1 快艇从港口B到小岛C需要多少时间 试一试 2009年江苏省中考原题 如图 在航线l的两侧分别有观测点A和B 点A到航线l的距离为2km 点B位于点A北偏东60 方向且与A相距10km处 现有一艘轮船从位于点B南偏西76 方向的C处 正沿该航线自西向东航行 5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论