中考数学分类汇编-4.5利用一元二次方程解决实际问题(2015年).doc_第1页
中考数学分类汇编-4.5利用一元二次方程解决实际问题(2015年).doc_第2页
中考数学分类汇编-4.5利用一元二次方程解决实际问题(2015年).doc_第3页
中考数学分类汇编-4.5利用一元二次方程解决实际问题(2015年).doc_第4页
中考数学分类汇编-4.5利用一元二次方程解决实际问题(2015年).doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1. (2015 山东省东营市) 2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)答案:解:(1)设平均每年下调的百分率为x,根据题意得:6500(1x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为5265(110%)=4738.5(元/米2),则100平方米的住房总房款为1004738.5=473850=47.385(万元),20+3047.385,张强的愿望可以实现2. (2015 内蒙古兴安盟) 学校要组织足球比赛赛制为单循环形式(每两队之间赛一场)计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛根据题意,下面所列方程正确的是()A x2=21B x(x1)=21C x2=21D x(x1)=21答案:B3. (2015 湖北省襄阳市) 如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?答案:解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(252x+1)m,由题意得x(252x+1)=80,化简,得x213x+40=0,解得:x1=5,x2,8,当x=5时,262x=1612(舍去),当x=8时,262x=1012,答:所围矩形猪舍的长为10m、宽为8m4. (2015 内蒙古巴彦淖尔市) 某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛设比赛组织者应邀请x个队参赛,则x满足的方程为答案:分析: 关系式为:球队总数每支球队需赛的场数2=25,把相关数值代入即可解答: 解:每支球队都需要与其他球队赛(x1)场,但2队之间只有1场比赛,所以可列方程为:x(x1)=25故答案是:x(x1)=25点评: 本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以25. (2015 湖南省衡阳市) 绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米设绿地的宽为米,根据题意,可列方程为( )A B C D答案: 6. (2015 贵州省黔西南州) 某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为() A x(x11)=180 B 2x+2(x11)=180 C x(x+11)=180 D 2x+2(x+11)=180答案:分析: 根据题意设出未知数,利用矩形的面积公式列出方程即可解答: 解:设宽为x米,则长为(x+11)米,根据题意得:x(x+11)=180,故选C点评: 本题考查了一元二次方程的应用,解题的关键是根据矩形的面积公式列出方程7. (2015 四川省自贡市) 利用一面墙(墙的长度不限),另三边用长的篱笆围成一个面积为的矩形场地.求矩形的长和宽.答案:分析:设垂直于墙的一边为x米,则邻边长为(582x),利用矩形的面积公式列出方程并解答解答:解:设垂直于墙的一边为x米,得:x(582x)=200 解得:x1=25,x2=4另一边为8米或50米答:当矩形长为25米是宽为8米,当矩形长为50米是宽为4米点评:本题考查了一元二次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解8. (2015 四川省宜宾市) 某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为7600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为 .答案:8100(1-x)2 =76009. (2015 四川省达州市) 】新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元为了迎接“六一”儿童节,商场决定采取适当的降价措施经调査,如果每件童装降价1元,那么平均每天就可多售出2件要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为答案:】分析:根据题意表示出降价x元后的销量以及每件衣服的利润,由平均每天销售这种童装盈利1200元,进而得出答案解答:解:设每件童裝应降价x元,可列方程为:(40x)(20+2x)=1200故答案为:(40x)(20+2x)=1200点评:此题主要考查了由实际问题抽象出一元二次方程,正确表示出销量与每件童装的利润是解题关键10. (2015 四川省巴中市) 】如图,某农场有一块长40m,宽32m的矩形种植地,为方便管理,准备沿平行于两边的方向纵、横各修建一条等宽的小路,要使种植面积为1140m2,求小路的宽答案:】分析:本题可设小路的宽为xm,将4块种植地平移为一个长方形,长为(40x)m,宽为(32x)m根据长方形面积公式即可求出小路的宽解答:解:设小路的宽为xm,依题意有(40x)(32x)=1140,整理,得x272x+140=0解得x1=2,x2=70(不合题意,舍去)答:小路的宽应是2m点评:本题考查了一元二次方程的应用,应熟记长方形的面积公式另外求出4块种植地平移为一个长方形的长和宽是解决本题的关键11. (2015 四川省巴中市) 】某种品牌运动服经过两次降价,每件件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率设每次降价的百分率为x,下面所列的方程中正确的是()A560(1+x)2=315B560(1x)2=315C560(12x)2=315D560(1x2)=315答案:】分析:设每次降价的百分率为x,根据降价后的价格=降价前的价格(1降价的百分率),则第一次降价后的价格是560(1x),第二次后的价格是560(1x)2,据此即可列方程求解解答:解:设每次降价的百分率为x,由题意得:560(1x)2=315,故选:B点评:此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可12. (2015 山东省日照市) 某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A20%B40%C220%D30%答案:分析:首先设每年投资的增长率为x根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解解答:解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=2.2(舍去),故每年投资的增长率为为20%故选:A点评:此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率13. (2015 山东省莱芜市) 某公司在年的盈利额为万元,预计年的盈利额将达到万元,若每年比上一年盈利额增长的百分率相同,那么该公司在年的盈利额为_万元答案:220; 14. (2015 山东省济南市) 将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子已知盒子的容积为300cm3,则原铁皮的边长为( )A 10cm B 13cm C 14cm D 16cm答案:D15. (2015 辽宁省铁岭市) .某商品经过连续两次降价,销售单价由原来200元降到162元设平均每次降价的百分率为x,根据题意可列方程为()A200(1x)2=162 B200(1+x)2=162C162(1+x)2=200D162(1x)2=200答案:分析:此题利用基本数量关系:商品原价(1平均每次降价的百分率)=现在的价格,列方程即可解答:解:由题意可列方程是:200(1x)2=168故选A点评:此题考查一元二次方程的应用最基本数量关系:商品原价(1平均每次降价的百分率)=现在的价格16. (2015 湖南省长沙市) 现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?答案:分析: (1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数解答: 解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=2.2(不合题意舍去)答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1(1+10%)=13.31(万件)平均每人每月最多可投递0.6万件,21名快递投递业务员能完成的快递投递任务是:0.621=12.613.31,该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务需要增加业务员(13.3112.6)0.6=12(人)答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员点评: 本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解17. (2015 黑龙江省哈尔滨市) 今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2设扩大后的正方形绿地边长为x m,下面所列方程正确的是() A x(x60)=1600 B x(x+60)=1600 C 60(x+60)=1600 D 60(x60)=1600答案:分析: 设扩大后的正方形绿地边长为xm,根据“扩大后的绿地面积比原来增加1600m2”建立方程即可解答: 解:设扩大后的正方形绿地边长为xm,根据题意得x260x=1600,即x(x60)=1600故选A点评: 本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系18. (2015 甘肃省武威市) 今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A2500x2=3600B2500(1+x)2=3600C2500(1+x%)2=3600D2500(1+x)+2500(1+x)2=3600答案:分析:根据2013年教育经费额(1+平均年增长率)2=2015年教育经费支出额,列出方程即可解答:解:设增长率为x,根据题意得2500(1+x)2=3500,故选B点评:本题考查一元二次方程的应用求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b(当增长时中间的“”号选 “+”,当下降时中间的“”号选“”)19. (2015 广东省佛山市) 如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m,另一边减少了3m,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是()A7mB8mC9mD10m答案:分析:本题可设原正方形的边长为xm,则剩余的空地长为(x2)m,宽为(x3)m根据长方形的面积公式方程可列出,进而可求出原正方形的边长解答:解:设原正方形的边长为xm,依题意有(x3)(x2)=20,解得:x1=7,x2=2(不合题意,舍去)即:原正方形的边长7m故选:A点评:本题考查了一元二次方程的应用学生应熟记长方形的面积公式另外求得剩余的空地的长和宽是解决本题的关键20. (2015 甘肃省兰州市) 股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再张,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为,则满足的方程是( )A. B. C. D. 答案:答案B解析试题分析:设跌停后的价格为1,则原价为,跌停后第一次上涨价格为(1+x)元,第二次涨价后价格为(1x)2元,根据题意找出等量关系:第二次涨价后的价格=原价,由此等量关系列出方程为:故选B21. (2015 贵州省毕节地区) 一个容器盛满纯药液40L,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L答案:分析: 设每次倒出液体xL,第一次倒出后还有纯药液(40x),药液的浓度为,再倒出xL后,倒出纯药液x,利用40xx就是剩下的纯药液10L,进而可得方程解答: 解:设每次倒出液体xL,由题意得:40xx=10,解得:x=60(舍去)或x=20答:每次倒出20升故答案为:20点评: 此题主要考查了一元二次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程22. (2015 广东省珠海市) 】白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82. 8公顷(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?答案:】分析:(1)设每绿地面积的年平均增长率为x,就可以表示出2014年的绿地面积,根据2014年的绿地面积达到82.8公顷建立方程求出x的值即可;(2)根据(1)求出的年增长率就可以求出结论解答:解:(1)设绿地面积的年平均增长率为x,根据意,得 57 .5(1+x)2=82.8解得:x1=0.2,x2=2. 2(不合题意,舍去)答:增长率为20%; (2)由题意,得82 8(1+0.2)=99.36万元答:2015年该镇绿地面积不能达到100公顷点评:本题考查了增长率问题的数量关系的运用,运用增长率的数量关系建立一元二次方程的运用,一元二次方程的解法的运用,解答时求出平均增长率是关键23. (2015 安徽省) 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是( )A1.4(1x)4.5 B1.4(12x)4.5C1.4(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论