第六章 频率与概率 教学设计.doc_第1页
第六章 频率与概率 教学设计.doc_第2页
第六章 频率与概率 教学设计.doc_第3页
第六章 频率与概率 教学设计.doc_第4页
第六章 频率与概率 教学设计.doc_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章 频率与概率第六章频率与概率本章总体设计介绍义务教育阶段学生可以掌握的概率模型大致分为三类:第一类问题没有理论概率只能借助试验模拟获得其估计值,一般而言,它是一个纯粹的现实问题;第二类问题虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生的认知水平,学生只能借助试验模拟获得其估计值;第三类问题则是简单的古典概型,理论上容易求出其概率.对于第三类问题,其繁简程度又有所不同,如随意掷一枚均匀的骰子,朝上点数为6的概率;掷一枚均匀的骰子,点数为奇数的概率;连续掷两次均匀的骰子,两次骰子的点的和为6的概率,等等.通过以前的学习,学生已经掌握了类似于的问题的解决方法;而对问题,学生尚未接触,本章将介绍计算其概率的两种方法树状图和列表法.本章同时还将研究上述第一、二两类问题,用试验的方法估计随机事件发生的概率.为此,本章以两步试验的事件发生的概率问题为切入点,一方面加强前后知识的联系,另一方面通过试验!动探索试验结果与理论概率之间的辩证关系,进一步加深学生对概率的理解,并借此引导学生用试验的方法估计一些复杂的随机事件发生的概率. 本章的教学重点难点是:试验频率稳定于理论概率.本章共分为四节。第1节通过一个课堂试验活动,让学生逐步计算一个随机事件发生的试验频率,观察其中的规律性,并利用类比的方法归纳出试验频率趋近于理论概率这一规律性,然后介绍两种计算理论概率的方法一一树状图和列表法;在此基础上;第2,3节利用试验频率来估计一些复杂事件发生的概率;第4节利用试验频率与理论概率之间关系的分析,揭示统计推断的一些理论依据,力图加强概率与统计的联系.在概率模型的选择上,教科书注意了模型的递进性、现实性和趣味性,以激发学生的学习兴趣.例如,对于试验估算概率的有关问题,力图联系学生的生活实际,同时又注意了问题的趣味性和可操作性,为此选择了一个历史上著名的投针试验和一个密切联系学生生活的生日问题.本章教学建议1. .注重引导学生积极参与试验活动,在试验中体会频率的稳定性,形成对概率的全面理解,发展学生初步的辩证思维能力.让学生经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力. 2.通过试验等活动,理解事件发生的频率与概率之间的关系,加深学生对概率的理解,进一步体会概率是描述随机现象的数学模型.3.能运用树状图和列表法计算简单事件发生的概率,能用试验或模拟试验的方法估计一些较为复杂的随机事件发生的概率.4.结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系.第一节第一课时:1.1 频率与概率(一)一、学生知识状况分析学生在七、八年级已经认识了许多随机事件,对必然事件、不可能事件、不确定事件有了一些了解,研究了一些简单的随机事件发生的概率,如抛掷一枚骰子,点数为6的概率;抛掷一枚骰子,点数为奇数的概率;已会对一些现象作出解释,对一些简单的游戏公平性作出判断.学生切实感受到了概率的作用.二、教学任务分析学生对随机事件及其发生的概率的认识是一较长的认知过程,对概率的理解也有必要随着其数学活动经验的不断加深而逐步得到发展.本节课通过一个两步试验的事件的概率问题,通过试验活动, 体会频率的稳定性, 并形成对概率的全面理解。感悟并非任何随机事件的发生的概率都可以理论地计算,利用类比的方法归纳出试验次数很大时,试验频率稳定于理论概率这一规律, 并据此估计某一事件发生的概率.发展学生初步的辩证思维能力教学重点: 理解试验次数很大时,试验频率稳定于理论概率这一规律.能用试验的方法估计一些复杂的随机事件发生的概率。.教学难点: 理解试验次数很大时,试验频率稳定于理论概率这一规律. 教学目标:1知识与技能目标;理解当试验次数较大时试验频率稳定于概率,并可据此估计某一事件发生的概率;会用试验方法估计一些复杂的随机事件发生的概率.2方法与过程目标:结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系。经历试验、统计等活动过程,在活动中在活动中促进他们对知识的学习,进一步发展学生合作交流的意识和能力.3情感态度价值观培养学生实事求是的科学态度,提高自身的数学交流水平,增强与人合作的精神和解决实际问题的能力,发展辩证思维能力.积极参与数学活动,通过实验提高学习数学的兴趣.发展学生初步的辩证思维能力三、教学过程分析本节设计六个教学环节第一环节.创设问题情境,引入新课;第二环节.活动探究; 第三环节.类比归纳结论;第四环节.课堂练习;第五环节.课堂小结; 第六环节.布置作业。第一环节:创设问题情境,引入新课活动内容:课堂提问和练习.活动目的:引起认知冲突,. 激发学生的求知欲.同时对前面学习相关内容回忆梳理.活动过程:回顾七年级时一些基本概念和曾经学习过的两个问题:1用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币.如果正面朝上,小丽去;如果反面朝上,小明去这样决定对双方公平吗? 2任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)“6”朝上的概率是多少?提出两个新问题:1如果是连续掷两次均匀的硬币。会出现几种等可能的结果?出现“一正一反”的概率为多少呢?( 给学生思考时间,之后学生很可能猜测结论,让学生畅说欲言).2如果将上面均匀的小立方体也连续掷两次,会出现几种等可能的结果,两次总数都是偶数的概率为多少呢? (学生面对这个问题与上个问题的反应相同.)提问:请大家分析这两个问题与前面两个问题有什么不同?学生经过思考后可能会得出: 上面两个游戏是一枚硬币掷一次、 一个正方体掷一次;后面两个问题是连续掷两次. 从而,教师引出本课的主题: 前面的两个问题涉及的都是一步实验而后两个问题都是两步试验.从这一节开始我们将进一步学习概率的有关知识我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率同样的我们也可以通过试验估计较复杂事件的概率活动效果及注意事项:注意及时揭示掷一枚硬币游戏与掷两枚硬币游戏问题的同与不同之处.第二环节:活动探究,猜想结论活动内容1:摸牌活动. 用课前准备的扑克牌:每组两张,两张牌的牌面数字分别是1和2从每组牌中各摸出一张,称为一次试验 (1)估计一次试验中。两张牌的牌面数字和可能有哪些值?(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:牌面数字和234频数频率(3)根据上表,制作相应的频数分布直方图 (4)根据频数分布直方图估计哪种情况的频率最大? (5)计算两张牌的牌面数字和等于3的频率是多少? (6)四个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的试验数据,相应得到试验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表并绘制相应的折线统计图试验次数6090120150180两张牌面数字和等于3的频数两张牌面数字和等于3的频率教具准备: 每组准备两张牌,牌面数字分别是1和2;多媒体演示;活动方式:分组实验,全班合作交活动目的:经历试验、统计等活动过程,通过摸牌活动,体会试验次数很大时,试验的频率渐趋稳定在活动中进一步发展学生合作交流的意识和能力活动效果及注意事项:学生参与意识都很强,一般都能按活动设计完成任务,但学生不注意活动目的是什么.教师注意引导学生通过试验发现总结规律.注意在具体试验活动的展开过程中,要力图体现各个步骤的渐次递进:(1)在一次实验中,两张牌的牌面数字和可能为2,3,4;(2)学生根据自己的试验结果如实填写试验数据;(3)制作相应的频数分布直方图,一方面为了复习巩固八年级下册有关频数、频率的知识,同时也便于学生更为直观地获得(4)的结论;(4)一般而言,学生通过试验以及上面(2) (3)的图表容易猜想两张牌的牌面数字和为3的频率最大理论上两张牌的牌面数字和为2,3,4的概率依次为,应该说,经过30次实验,学生基本能够猜想两张牌的牌面数字和为3的频率最大这里一定要保证试验的次数,如果试验次数太少,结论可能会有较大出入;(5)有了(4)中的结沦自然过渡到研究其频率的大小当然,两张牌的牌面数字和等于3的频率因各组试验结果而异正是有了学生结论的差异性,才顺理成章地展开问题(6),汇总组内每人的实验数据;目的在于通过逐步汇总学生的试验数据,得到试验60次、90次、120次、150次、180次时的频率并绘制相应的折线统计图,从而动态地研究频率随着试验次数的变化而变化的情况)。(6)提醒学生注意摸牌过程中要保证每种结果出现的等可能性。活动内容2:探究频率与概率之间的关系.活动目的:使学生感悟经过大量试验后,其频率稳定于其理论概率附近.活动过程:首先,引导各小组观察自己的实验数据,观察频率和实验次数的关系;接着让各小组之间进行交流,观察其他小组的频率和实验次数之间是否存在着刚才发现的关系,最后让各小组交流数据,并将全部数据汇总,再次引导学生观察频率和实验次数的关系。从而让学生感受到“大量试验后,频率稳定于某一值”的结论。 在统计和汇总各个小组数据时,可以使用Excel统计结果并绘制频数分布直方图。活动效果及注意事项:让学生汇总小组的试验结果,再汇总各组的学生试验结果,规律清楚反映出来,使学生由感性认识到理性认识,就能主动地接受多次试验的频率逐渐稳定于其理论概率,但试验频率仍然是理论概率的一个近似值,很有可能在做多少次试验后,频率与理论概率之间存在误差.第三环节:类比归纳结论面对具体问题,总结上一环节:当试验次数很大时,两张牌的牌面数字和等于3的频率也应稳定在相应的概率附近.因此,我们可由两张牌的牌面数字和等于3的频率约为估算两张牌的牌面数字和等于3的概率约为.从而得出一般性结论:可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率. 当实验次数很大时,频率比较稳定,稳定在相应的概率附近.第四环节:课堂练习 请选择:下列说法正确的是( ) A. 某事件发生的概率为,这就是说:在两次重复实验中,必有一次发生 B一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球 C两枚一元的硬币同时抛下,可能出现的情形有:两枚均为正;两枚均为反;一正一反,所以出现一正一反的概率是 D全年级有400名同学,一定会有2人同一天过生日 分析:“当试验次数很大时,试验频率稳定于理论概率”并不意味着,试验次数越大,就越为靠近,应该说,作为一个整体趋势,上述结论是正确的,而不是某某事件的概率为,在两次重复试验中就一定有一次发生、因此A不正确,B也不正确而对于C,两枚硬币同时抛下,这种情况等同于刚才的抽牌试验,因此出现一正一反的概率为即,对于D,根据抽屉原理可知是正确的,应选D第五环节:课堂小结 能说说通过本节课的学习,你有哪些收获吗? 谈谈频率与概率之间既有联系和区别.第六环节:布置作业 习题 小组撰写一份试验报告反映对概率的理解.四、教学反思本节课只有让学生经历试验,才能感悟频率稳定概率这一规律。频率稳定概率这一规律是解决本节概率的基础,所以本节课一定要学生亲身参与试验全过程,不可为了赶进度而忽略试验。第二课时:1.2频率与概率(二)一、学生知识状况分析七年级时学生已会求涉及一步试验的随机事件的概率;在频率与概率的第一课时里,学生通过试验、统计等活动,已经对“当试验次数很大时,事件发生的频率稳定在相应概率的附近”有了体验,对试验频率稳定于理论概率这一重要的概率思想有所了解.二、教学任务分析本课时介绍两种计算概率的方法树状图和列表法; 要求会借助树状图和列表法计算简单的事件发生概率为此建立教学目标如下:1知识与技能目标:进一步理解当试验次数较大时试验频率稳定于概率.会借助树状图和列表法计算涉及两步试验的随机事件发生的概率2方法与过程目标:合作探究,培养合作交流的意识和良好思维习惯.3.情感态度价值观积极参与数学活动, 提高自身的数学交流水平,经历成功与失败,获得成功感,提高学习数学的兴趣.发展学生初步的辩证思维能力教学重点:借助树状图和列表法计算涉及两步试验的随机事件发生的概率教学难点:理解两步试验中“两步”之间的相互独立性,进而认识两步试验所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算涉及两步试验的随机事件发生的概率三、教学过程分析本节设计五个教学环节第一环节:承上启下,提出问题;第二环节:合作学习,解决问题第三环节:练习提高第四环节:知识盘点; 第五环节:布置作业第一环节:承上启下,提出问题 复习提问:某个事件发生的概率是,这意味着在两次重复试验中,该事件必有一次发生吗?目的:使学生再次体会,某个事件发生的概率是,是指当实验次数很大时,这个事件的实验频率稳定于它的理率概率,但我们在前面做过的大量实验中还发现,实验频率并不一定等于理论概率,虽然多次实验的频率逐渐稳定于其理论概率,但也可能无论做多少次实验,实验频率仍是理论概率的一个近似值,而不能等同于理论概率,两者存在着一定的偏差,应该说,偏差的存在是正常的,经常的.第二环节:合作学习,解决问题活动内容:两张牌的牌面数字分别是1和2从每组牌中各摸出一张,计算两张牌的牌面数字和为3的概率 .活动目的:探究用树状图或表格,求某些事件发生的概率. 活动过程:提出要求:通过同位合作,来解决以下问题:能用我们学过的知识计算出两张牌的牌面数字和为3的概率吗?.学生分组活动后,可能会用如下几种计算方法提出:方法一:一次实验中两张牌的牌面数字的和等可能的情况有: 1+12;1+23;2+13;2+24共有四种情况而和为3的情况有2种,因此,P(两张牌的牌面数字和等于3)= . 两张牌的牌面数字的和有四种等可能的情况,而两张牌的牌面数字和为3的情况有2次,因此两张牌的牌面数字的和为3的概率为方法二:两张牌的牌面数字的和有四种等可能的情况,也可以用树状图来表示而两张牌的牌面数字和为3的情况有2次,因此两张牌的牌面数字的和为3的概率为 方法三:通过列表的方式 第二张牌面数字第一张牌面数字1212如果学生没想到这些方法,教师可以以呈现表格、或者提问的方式等引出这些不同的求法,从而引出列表法.用树状图或表格,知道利用这些方法,可以方便地求出某些事件发生的概率.在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的活动效果及注意事项:学生一般都会用树状图或表格求出某些事件发生的概率,也能体会到这种方法的简便性,但是容易忽略各种情况出现的可能性是相同的这个条件教师注意提醒,在借助于树状图或表格求某些事件发生的概率时,必须保证各种情况出现的可能性是相同的第三环节:练习提高活动内容:处理练习题活动目的:检测学习效果。及时反馈,查却补漏.活动过程:练习:抛掷两枚均匀的硬币,至少有一次正面向上的概率是多少? 请同桌用不同的方法来完成这个习题.第四环节:知识盘点活动内容:师生共同盘点知识。活动目的:通过对本节课的小结,加深对本节知识的理解,理解掌握树状图和列表法求理论概率的方法,并熟练应用.活动效果及注意事项:注意及时发现学生练习中出现的错误,进行讲评,使学生能当堂掌握用树状图和列表法求理论概率. 第五环节:布置作业1 习题6.2 2 请同学们课后完成适当的练习:四、教学反思注意:在教学时要反复强调:在借助于树状图或表格求事件发生的概率时,应注意到各种情况出现的等可能性以免学生忽略这个条件错误使用树状图或表格求事件发生的概率.所以一定要指出每种结果的可能性是相同的。第三课时:1.3 频率与概率(三)一、学生知识状况分析七年级时学生已会求涉及一步试验的随机事件的概率;频率与概率的第一课时学生通过试验、统计等活动,已经对“当试验次数很大时,事件发生的频率稳定在相应概率的附近”有了体验,对试验频率稳定于理论概率这一重要的概率思想有所了解。并能借助于树状图、列表法计算两步随机实验的概率.二、教学任务分析进一步经历用树状图、列表法计算两步随机实验的概率教学目标1知识与技能目标:经历计算理论概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯2方法与过程目标:鼓励学生思维的多样性,发展学生的创新意识进一步提高学习数学的信心教学重点: 借助于树状图、列表法计算随机事件的概率.教学难点:正确利用树状图、列表法计算随机事件的概率.三、教学过程分析本节设计六个教学环节第一环节:合作学习,解决问题第二环节:练习提高第三环节:知识盘点第四环节:布置作业 利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;较方便地求出某些事件发生的概率. 用树状图和列表的方法求概率时,应注意各种结果出现能性务必相同.第一环节:合作学习,解决问题活动内容:“配紫色”游戏.活动目的:以“配紫色”游戏为主要情境,让学生再次经历利用树状图或列表的方法求出概率并解决问题的过程,通过应用所学知识解决问题的能力. 活动过程: 游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成相等的几个扇形.游戏规则是:游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?解法一:借助树状图(1)开开、始会寺、开始始红蓝红蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)(2)由图可知,共有四种等可能的结果,其中能够配成紫色的有(红,蓝)(蓝,红)2种,所以游戏者获胜的概率是=.解法二: 借助表格(1)红色蓝色红色(红,红)(红,蓝)蓝色(蓝,红)(蓝,蓝)由表可知,共有四种等可能的结果,其中能够配成紫色的有(红,蓝)(蓝,红)2种,所以游戏者获胜的概率是=.游戏2 “配紫色2”用图所示的转盘进行“配紫色”游戏. 小颖制作了下面的树状图, 并据此求出游戏者获胜的概率是.开开、始会寺、开始始红蓝红蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是红色蓝色红色1(红1,红)(红1,蓝)红色2(红2,红)(红2,蓝)蓝色(蓝,红)(蓝,蓝)你认为谁做得对?说说你的理由活动效果:有了上节课对利用树状图或列表的方法求出概率的体验,这节课学生基本能顺利完成本节教学内容.本节以学生练习为主.对于游戏2,学生能指出“小颖的做法不正确,小亮的做法正确因为左边的转盘中红色部分和蓝色部分的面积不同,因而指针落在两个区域的可能性不同而用列表法求随机事件发生的概率时,应注意各种情况出现的可能性务必相同而小亮的做法把左边转盘中的红色区域等分成2份,分别记作“红色1”“红色2”,保证了左边转盘中指针落在“蓝色区域”“红色1”“红色2”三个区域的等可能性,因此是正确的”。第二环节:练习提高 活动内容:课堂练习1袋中装有两个完全相同的球,分别标有数字“1”和“2”。小明设计了一个游戏:游戏者每次从袋中随机摸出一个球,并且自由转动图中的转盘(转盘被分成三个扇形)游戏规则是:如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏者获胜的概率.2如图,小明和小红正在玩一个游戏:每人先抛掷骰子,骰子朝上的数字是几,就将棋子前进几格,并获得格子中 的相应物品。现在轮到小明掷,棋子在标有数字“1”的那一格,小明能一次就获得“汽车”吗?小红下一次抛掷可能得到”汽车”吗?她下一次得到”汽车”的概率是多少?活动目的:检测学生利用树状图或列表的方法求出概率并解决问题的掌握情况.注意事项:要不断提醒学生注意:在用树状图或列表法计算概率时,务必保证每种情况出现的可能性相同.否则是错误的.第三环节:知识盘点 今天我们学习了“配紫色”游戏,谈谈收获吧。进一步指出:使用树状图和列表的方法求概率时,应注意各种结果出现可能性务必相同.第四环节:布置作业1. 习题2.课后思考题:设计两个转盘做“配紫色”游戏,使游戏者获胜的概率为.四、教学反思教学过程中要不断强调,用树状图和列表的方法求概率时,应注意各种结果出现可能性务必相同.教学时教师可根据具体情况选择更为适合学生的素材进行教学.第二节 投针试验一、学生知识状况分析 通过第6.1节的学习,学生已认识到当试验次数较大时试验频率稳定于理论概率,并可据此估计某一事件发生的概率,已会用树状图或列表计算两步试验的事件的概率. 本节课讨论的问题, 虽然存在理论概率,但其理论计算已经超出了义务教育阶段学生的认知水平,学生将借助试验模拟获得其估计值。二、教学任务分析本节选取了一个历史上较为著名的投针试验为题材力图让学生通过亲身的试验、统计过程获得用试验的方法估计复杂事件发生的概率的体验教学目标 1. 知识与技能目标借助大量重复试验去感悟试验频率稳定于理论概率能用试验的方法估计一些复杂的随机事件发生的概率;2.方法与过程目标结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的关系。经历试验、统计等活动过程,在活动中在活动中促进他们对知识的学习,进一步发展学生合作交流的意识和能力.3情感态度价值观培养学生实事求是的科学态度,提高自身的数学交流水平,增强与人合作的精神和解决实际问题的能力,激发学生学习数学的兴趣.发展辩证思维能力.教学重点:能用试验方法估计一些复杂的随机事件发生的概率.教学难点:借助大量的重复试验去感悟试验频率稳定于理论概率.三、教学过程分析本节设计五个教学环节第一环节创设问题情境,引入新课;第二环节小组活动探究; 第三环节阅读拓展第四环节课堂小结;第五环节布置作业 第一环节创设问题情境,引入新课教具准备:大头针,图钉,多媒体演示通过问题串的形式引入新课: 问题:(1)抛图钉时,图钉落地有两种情况,一种是针尖向下(如图一所示)一种是钉帽向下(如图二所示),能借助书状图或列表分别算出它们的概率吗?(2)掷一枚图钉,有几种结果?它们是等可能的吗?(3)怎样求这一事件的概率呢? 通过问题的形式向学生明晰:(1)用树状图或列表格的方法计算随机事件的概率要求试验出现的各种结果是等可能的,并且试验出现的结果必须是有限个 (2)图钉落地有“朝天”和“倾斜”两个可能结果,但这两个可能的结果不是等可能的,也无法知道它们的可能性各是多少.(3)一个试验,虽然结果有有限个,但各个结果出现的可能性不相等,也无法知道它们的可能性各是多少,所以不能用树状图或列表格的方法计算随机事件的概率只能用用试验的方法求出其频率估计其概率. 因为我们知道:当试验次数很大时,试验频率稳定于理论概率,并可据此估计某一事件发生的概率第二环节:小组活动探究 活动内容1:从一定高度落下的图钉,落地后可能钉尖着地,也可能钉帽着地你估计哪种事件发生的概率大?活动目的:利用“当试验次数较大时,试验频率稳定于理论概率”来估计某一随机事件发生的概率 活动方式:小组合作交流,全班汇总试验数据,交流研讨 活动工具:形状、大小完全相同的图钉 活动步骤:1分组:每组4人2每组每人做20次试验,根据试验结果,填写下表的表格:试验结果钉尖着地钉帽着地频数频率3根据上表你认为哪种情况的频率较大? 4分别汇总本小组其中两人、三人、四人、五人的试验数据,相应得到试验40次、60次、80次、100次时钉帽着地的频率,填写下表,并绘制折线统计图试验次数406080100钉帽着地的频数钉帽着地的频率5汇总全班各小组其中一个组两个组、三个组、四个组的试验数据,相应得到试验100次、200次、300次、400次时钉帽着地的频率,并绘制折线统计图 6由折线统计图,估计钉帽着地的概率 7.将图钉掷200次,每掷20次,统计一下两个组同学“钉帽着地”这一结果出现的次数,并算出相应的频率,如下表将统计数据(“钉帽着地”的频率)画成折线统计图,看起来更直观实数累计次数出现“顶帽着地”的次数出现“顶帽着地”的频率20406080100120140160180200(用Excel统计并绘制折线统计图)从图中可发现,“顶帽着地”的频率开始“摆动”得很厉害,随着试验次数的增加,这个频率就开始比较稳定了。不同的试验情况(图钉的型号、离地的高度等)可能会影响试验的数据,因此可能在不同的地区、不同的学生,做这个试验会得到不同的“稳定值”。笔者曾在教学活动中完成这个过程,得到频率在56.5左右摆动 活动效果及注意事项:1.注意学生的安全.2.图钉必须从同一个高度自由落下,保证着地时的随机性和试验的可重复操作性;组内同学合作时要进行适当的分工;体现学生的自主性,试验活动以及试验数据的汇总等都可以由学生白行组织完成;教师认真评价学生合作交流的意识和能力,学生的思维水平,学生的动手能力等)第三环节:阅读拓宽活动内容:阅读相关文章,做投针式验.活动目的:1.通过学读使学生感受任何一个发现都凝聚着辛勤的劳动和汗水,培养学生吃苦耐劳精神;给学生一定的拓展空间,让学生体会到有些高深的数学中蕴涵的思想极其朴素,从而激发学生的数学学习兴趣2. 利用“当试验次数较大时,试验频率稳定于理论概率”,并据此估计针与平行线相交的概率活动方式:小组交流,全班研讨的方法 活动过程:利用数学史上著名的投针试验引入问题: 平面上画着一些平行线,相邻的两条平行线之间的距离为a,向此平面任投一长度为l(la)的针,该针可能与其中某一条平行线相交,也可能与它们都不相交能通过列表或画树状图求出该针与平行线相交的概率吗? 通过“图钉试验”,学生可以初步得到,生 由于相交和不相交的可能性不相同,因此这个事件的概率也不能列表或画树状图求出该针与平行线相交的概率但可以利用试验,依据“当试验次数较大时,试验频率稳定于理论概率”来估计该针与平行线相交的概率学生活动,步骤如下: 1分组,三人一组(一人统计)2.取一张白纸,在上面画一组平行线它们之间的距离为2厘米,另外准备一根1厘米长的针在纸下面垫一层柔软的东西,使针落在纸面上时不会弹跳起来 通过试验,得到数据后,请学生利用计算器计算试验总次数除以直线与平行线相交的次数,学生会将发现商好像是的一个近似值而且投掷次数越多,所得到的商与越接近有了这一感性认识后,给学生提供一些关于该试验的历史数据。请同学们打开书阅读“读一读”投针试验这篇短文介绍了关于投针试验的一些历史资料,以及其概率与之间的关系,据此获得一种估计的值的方法并将其引申为现在广泛使用的蒙特卡洛方法,旨在给学生一定的拓展空间,让学生体会到有些高深的数学中蕴涵的思想极其朴素,从而激发学生的数学学习兴趣 如果班级学生整体情况比较好,可能会有学生提问:“把总的次数(即相交的与不相交的次数之和)除以相交的次数,得到的商是圆周率的近似值,投掷次数越多,得到的近似值越精确,为什么会这样呢?” 教师可以有选择性的讲解以下内容:(讲解的方式不一定在课堂,不一定是面向全体同学,也可以仅向有需要的学生提供以下的阅读资料或“拓展资源”中的有关的投针试验的阅读文章) 当针与直线相交时,必有其上的某1毫米处相交而每1毫米最可能与直线相交的机会是相等的,它的次数应为全针与直线相交的最可能次数k的如果针上某一段长n毫米,那么这一段与直线最可能相交的次数应为,即最可能的相交次数和针的长度成正比 需要指出的是,这个最可能的相交次数只与针的长度成正比,而与针的形状无关例如,我们将10毫米的针弯成两段,一段长x毫米,另一段长为(10-x)毫米,那么这两段的最可能与直线相交的次数分别为和.这样,全针的最可能相交次数仍为k,即这个最可能相交次数与针的形状无关当然,将针的形状弯成某种形状后,有时可能在针的某儿处都和直线相交,这时应把每一个交点都记作相交一次 现在将针弯曲成一个圆形假定这时的针的粗细仍是均匀的,且圆的直径等于20毫米,那么每投一次圆环总能和直线相交于两点(正好和两条直线相切也记作两个交点)投掷n次,相交次数为2n次对于10毫米的针,它的最可能相交次数是k次由于圆环的长是20毫米,等于针长的2倍,所以圆环相交次数应是针的最可能的相交次数的2倍,即2n=2k, 由此可得=活动效果及注意事项:学生好奇心强,但是目的性不强,教师注意引导学生考虑试验的目的是什么,使试验处在探究的氛围中.注意:1.每组学生都确定相同的L和a,保证试验结果统计数据可以汇总2.在试验过程中,有时针与线是否相交较难判断,学生可能为此发生一些争执,教师可以适当地加以指导,如建议学生忽略这次试验或者认为相交、不相交各计半次,等等避免学生过多地停留于此. 3每组至少完成100次试验,分别记录下其中相交和不相交的次数 4统计全班的试验数据,估计针与平行线相交的概率 第四环节:课堂小结 这节课我们学会了用试验的方法估计一些复杂随机事件发生的概率,并亲自体验到了“当试验次数较大时,试验频率稳定于理论概率,并可据此估计某一事件发生的概率”经历试验、统计等活动过程第五环节:布置作业 1习题64 2继续投针试验,加大投针试验次数估算的值 3.课外活动与探究 随便说出3个正数,以这3个数为边长一定能围成一个三角形吗?一定能围成一个钝角三角形(其中最大边的平方大于另两边的平方和)吗?估计能围成一个钝角三角形的概率本题仍是利用试验的方法估计随机事件发生的概率,选择该题材的原因是其概率与有关,并与“读一读”中内容相呼应具体操作时,可以几个学生组成合作小组,每人写一个数在纸上,然后同时公布各自的数进行判断随便说出三个正数,以这三个正数为边不一定能组成一个三角形,如不能以1,3,5三个数为边长组成三角形;当然也不一定能组成一个钝角三角形;能围成一个钝角三角形的概率的估计值因人而异,因试验次数而异事实上,不妨设所取三数为(a,b,c(0c,a2+b21, 1 结果其理论概率为.四、教学反思投针试验是一节活动课,因而要注意学生的自主性,试验活动和数据的汇总都可以交给给学生去做,力图让学生通过亲身的试验,统计过程获得用试验的方法估计复杂事件发生的概概率的体验.还可以充分利用结果与有关来设置情景激发学生的兴趣。第三节第一课时:3.1生日相同的概率(一)一、学生知识状况分析学生的知识技能基础:学生在上节投针试验的基础上,对通过试验估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.学生的活动经验基础:上节课学生亲身体验了“投针试验”,经历了试验、统计过程、获得试验方法估计复杂事件发生的概率的体验,并且在以前的数学学习活动中已经历了很多合作学习的过程,具有了一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析教材基于上节课的基础上,提出了本节课的具体学习任务:能用试验的方法估计一些复杂的随机事件发生的概率;经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率;难点是试验估计随机事件发生的概率;关键是通过试验、统计活动,体会随机事件的概率,为此,本节课的教学目标是:1、知识与技能经历收集数据、进行试验、统计结果、合作交流的过程,估计一些复杂的随机事件发生的概率.2、过程与方法经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力.3、情感、态度、价值观通过对贴近学生生活的有趣的生日问题的试验、统计,提高学生学习数学的兴趣,且有助于破除迷信,培养学生严谨的科学态度和辩证唯物主义世界观.三、教学过程分析本节课设计了七个教学环节:一、课前准备;二、情境引入;三、探索新知;四、练习提高;五、课时小结;六、布置作业;七、活动探究.第一环节:课前准备(提前一周布置)内容:以6人合作小组为单位,开展调查活动:每人课外调查10个人的生日、生肖.目的:收集数据,为本节课的学习提供素材,在课堂中运用源于学生实际调查的真实数据展开教学,能极大地激发学生学习数学的兴趣及学习的积极性与主动性.另一方面,也锻炼了学生的社交能力.实际效果与注意事项:学生课外收集数据时有可能来自相同的人,各小组课前准备时老师提醒尽量避免调查相同的人.第二环节:情境引入内容:红楼梦第62回中有这样的情节:当下又值宝玉生日已到,原来宝琴也是这日,二人相同。袭人笑道:“这是他来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听了,喜的忙作下揖去,说:原来今儿也是姐姐的芳诞.”平儿还福不迭。探春忙问:“原来邢妹妹也是今儿,我怎么就忘了。”探春笑道:“倒有些意思,一年十二个月,月月有几人生日。人多了,便这等巧了,也有三个一日,两个一日的。目的:以小说情节开篇,引人入胜,直接引入与生日有关的话题,激发学生的学习兴趣.实际效果:学生置身于情境之中,并陷入思考:为什么“便这等巧?”第三环节:探索新知经历试验、统计等活动过程,估计复杂随机事件(生日相同)的概率。 内容:教师提出问题串(1)400位同学中,一定有2人的生日相同(可以不同年)吗?有什么依据呢?(2)300位同学中,一定有2人的生日相同(可以不同年)吗?(3)教师提出一个论断:“我认为咱们班50个同学中很可能就有2个同学的生日相同”你相信吗?对于问题(1),学生能给予肯定的回答“一定”,对于能力比较强的学生可以用“抽屉原理”加以解释。例如,有的学生会给出如下的解释:“一年最多366天,400个同学中一定会出现至少2人出生在同月同日,相当于400个物品放到366个抽屉里,一定至少有2个物品放在同一抽屉里抽屉原理:把m个物品任意放进几个空抽屉里(mn),那么一定有一个抽屉中放进了至少2个物品”。对于问题(2),学生会给出“不一定”的答案。对于问题(3),学生会表示怀疑,不太相信。于是,在班级课堂里展开现场的调查。得到数据后请学生反思: 如果50个同学中有2人生日相同,能否说明50人中有2人生日相同的概率是1? 如果50人中没有2人生日相同,就说明50人中2 人生日相同的概率为0?学生能根据以往的知识进行反思,并能举一些类似的问题作为例子。例如:随意抛掷一枚硬币,若国徽面朝上,说它的确概率为1,国徽面朝下的概率为0.显然是错误的,我们知道它们的概率均为0.5.随意抛掷一枚骰子,“6朝上”时我们说“6朝上”的概率为1,6朝下的概率为0,显然也是错误的,我们知道它们的概率为1/6.活动一,每个同学课外调查10人的生日,从全班的调查结果中随机选择50人,看有没有2人生日相同,设计方案估计50人中有2人生日有相同的概率.活动设计目的:通过具体收据数据、实验、统计结果过程,丰富学生的数学活动经验,对本节课有更直观的感知,经历用实验估计理论概率的过程,初步感受到生日相同的概率较大.设计方案:学生自主设计.附学生设计的方案:方案一:将每个同学调查的生日随机排列成一方阵,然后按某一规则从中选取50个数据进行实验(如2520),从某行某列开始,自左而右,自上而下,选出50个数).方案二:把全班每个同学所调查的数据写在纸条上,放在箱子里随机抽取.方案三:从50个同学手里随机抽取一个调查数据,组成50个数据.方案四:全班分成10个小组,把每个小组调查数据放在一起,打乱次序,随机抽取5个,然后10个小组的结果放在一组成50个数据.活动过程指导:(1)节约时间,生日表示方式简化成四位数.如“0217”(2)人人参与,大胆发言、交流、讨论从大量的重复试验活动中感受生日相同的概率较大. (3)激励学生提出更好的活动方案,如:产生1365之间某一自然数随机数的方法;分工制作1365自然数卡片,放入纸箱随机抽取一张,记下号码,放回去,再随机抽取,直至抽出50张,多次重复试验,并估计出50人中有2人生日相同的概率,此为模拟试验.活动评价指导:(1)学生的参与程度,活动过程中的思维方式,与同学合作交流情况.(2)鼓励思维多样性.(3)关注学生能否用实验方法估计一些较复杂随机事件发生的概率.(4)关注学生对概率的理解是否全面.(5)关注实验次数.实际效果:通过以上探索活动,经历了大量重复试验,能估算出50人中有2人生日相同的概率是多少.约0.9704,很大.结果可解释红楼梦生日相同“遇的巧”的问题.这个结果出人意料之处就在于其结果违反了人们的直觉:人们往往觉得两人生日相同是一种可能性不大的事情,计算结果却是:如果人数不少于是23人,这种可能性就达50%.看下表是“几个人中至少有2人生日相同”的概率大小表:npnpnpnpnp200.4114290.6810380.8641470.9548560.9883210.4437300.7105390.8781480.9606570.9901220.4757310.7305400.8912490.9658580.9917230.5073320.7533410.9032500.9704590.9930240.5383330.7750420.9140510.9744600.9941250.5687340.7953430.9239520.9780260.5982350.8144440.9329530.9811270.6269360.8322450.9410540.9839280.6545370.8487460.9483550.9836第四环节:练习提高内容:课本P175随堂练习课外调查的10个人的生肖分别是什么?他们中有2人的生肖相同吗?6个人中呢?利用全班的调查数据设计一个方案,估计6个人中有2个人生肖相同的概率.目的:本问题与前面生日问题类似,借助于课外调查的数据再次进行有关问题的概率估算,丰富数学活动经验,直观感受较复杂事件的概率问题.设计方案:模仿生日问题,学生自主设计,以上方案仅供参考.方案一:全班分6人一小组试验(多出人员可一人当2人,3人),每人随机写下自己调查的一个生肖,小组长汇总收集数据,统计结果,课代表收集全班数据,估算6人中有2人生肖相同的概率.方案二:将全班调查好所有结果写在纸条上,放进箱子里随机抽取6张.方案三:生肖结果用数字代替排成方阵.活动过程指导:(1)简化过程,把生肖按顺序用1-12个数据代替.(2)鼓励学生积极大胆发表自己的见解.(3)在讨论、交流过程中使学生进一步感受大量重复试验中频率稳定于概率的意义.(4)激励学生探索该问题的模拟试验.活动评价指导:(1)主要是积极评价,鼓励学生思维的多样性.(2)看学生能否用试验的方法估计一些复杂随机事件的概率.(3)关注学生对概率意义的理解是否全面.(4)此问题的理论概率约0.78,在此不要求学生把结果精确到那一位.第五环节:课时小结内容:师生共同总结本节内容目的:回顾本节教学目标学生先自我总结,然后师生共析:本节课经历了调查、收集数据、整理数据、进行试验、统计结果,合作交流的过程,知道了用大量的实验频率来估计,一些复杂的随机事件的概率,当试验次数赵多时,实验频率稳定于理论概率,还知道了“直觉并

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论