实验一--序列、频谱、DFT的质.doc_第1页
实验一--序列、频谱、DFT的质.doc_第2页
实验一--序列、频谱、DFT的质.doc_第3页
实验一--序列、频谱、DFT的质.doc_第4页
实验一--序列、频谱、DFT的质.doc_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档专业:_信息与通信工程姓名:_ _学号_日期:_地点_实验报告课程名称: 数字信号处理 指导老师: 成绩:_实验名称: FIR序列、频谱、DFT的性质 实验类型:_演示_同组学生姓名: 一、实验目的和要求设计通过演示实验,建立对典型信号及其频谱的直观认识,理解DFT的物理意义、主要性质。二、实验内容和步骤2-1用MATLAB,计算得到五种共9个序列:2-1-1实指数序列例如,a=0.5, length=10 a=0.9, length=10 a=0.9, length=202-1-2复指数序列例如,a=0.5, b=0.8, length=102-1-3从正弦信号x(t)=sin(2pft+delta)抽样得到的正弦序列x(n)=sin(2pfnT+delta)。如,信号频率f=1Hz,初始相位delta=0,抽样间隔T=0.1秒,序列长length=10。2-1-4从余弦信号x(t)=cos(2pft + delta)抽样得到的余弦序列x(n)=cos(2pfnT + delta)。如,信号频率f=1Hz,初相位delta=0,抽样间隔T=0.1秒,序列长length=10。2-1-5含两个频率分量的复合函数序列x(n)=sin(2pf1nT)+deltasin(2pf2nT+phi)。如,频率f1(Hz)频率f2(Hz)相对振幅delta初相位phi (度)抽样间隔T(秒)序列长length130.500.110130.5900.110130.51800.1102-2 用MATLAB,对上述各个序列,重复下列过程。2-2-1画出一个序列的实部、虚部、模、相角;观察并记录实部、虚部、模、相角的实验名称:FIR序列、频谱、DFT的性质 姓名:_ 特征。2-2-2 计算该序列的幅度谱、频谱实部、频谱虚部;观察和并记录它们的特征,给予解释。2-2-3 观察同种序列取不同参数时的频谱,发现它们的差异,给予解释。三、主要仪器设备MATLAB编程。四、操作方法和实验步骤(参见“二、实验内容和步骤”)五、实验数据记录和处理列出MATLAB程序清单,加注释。2-1-1a (a=0.5, length=10)程序n=0:9;xn=(0.5).n).*(0=n&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n/10.*(0=n&n=5)+(10-n)/10.*(6=n&n=9); %求出对应频率figure(1); %画出序列的实部、虚部、模、相角subplot(2,2,1);stem(n,real(xn);xlabel(n);ylabel(real(xn);subplot(2,2,2);stem(n,imag(xn);xlabel(n);ylabel(imag(xn);subplot(2,2,3);stem(n,abs(xn);xlabel(n);ylabel(abs(xn);subplot(2,2,4);stem(n,angle(xn);xlabel(n);ylabel(angle(xn);figure(2); %画出序列的幅度谱、频谱实部、频谱虚部subplot(3,1,1);stem(f,abs(xw); xlabel(f/Hz);ylabel(abs(xw);实验名称:FIR序列、频谱、DFT的性质 姓名:_ 3subplot(3,1,2);stem(f,real(xw);xlabel(f/Hz);ylabel(real(xw);subplot(3,1,3);stem(f,imag(xw);xlabel(f/Hz);ylabel(imag(xw);2-1-1b(a=0.9, length=10)程序n=0:9;xn=(0.9).n).*(0=n&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n/10.*(0=n&n=5)+(10-n)/10.*(6=n&n=9); %求出对应频率figure(1); %画出序列的实部、虚部、模、相角subplot(2,2,1);stem(n,real(xn);xlabel(n);ylabel(real(xn);subplot(2,2,2);stem(n,imag(xn);xlabel(n);ylabel(imag(xn);subplot(2,2,3);stem(n,abs(xn);xlabel(n);ylabel(abs(xn);subplot(2,2,4);stem(n,angle(xn);xlabel(n);ylabel(angle(xn);figure(2); %画出序列的幅度谱、频谱实部、频谱虚部subplot(3,1,1);stem(f,abs(xw); xlabel(f/Hz);ylabel(abs(xw);subplot(3,1,2);stem(f,real(xw);xlabel(f/Hz);ylabel(real(xw);subplot(3,1,3);stem(f,imag(xw);xlabel(f/Hz);ylabel(imag(xw);2-1-1cn=0:19;xn=(0.9).n).*(0=n&n=19);实验名称:FIR序列、频谱、DFT的性质 姓名:_邵振江_学号_3080102350_P. 4xw=dftmtx(20)*xn; %用DFT求频谱f=n/20.*(0=n&n=10)+(20-n)/20.*(11=n&n=0&n=9);f=n/10.*(0=n&n=5)+(10-n)/10.*(6=n&n=0&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n.*(0=n&n=5)+(10-n).*(6=n&n=0&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n.*(0=n&n=5)+(10-n).*(6=n&n=0&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n.*(0=n&n=5)+(10-n).*(6=n&n=0&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n.*(0=n&n=5)+(10-n).*(6=n&n=0&n=9);xw=dftmtx(10)*xn; %用DFT求频谱f=n.*(0=n&n=5)+(10-n).*(6=n&n=9); %求出对应频率figure(1); %画出序列的实部、虚部、模、相角subplot(2,2,1);stem(n,real(xn);xlabel(n);ylabel(real(xn);subplot(2,2,2);stem(n,imag(xn);xlabel(n);ylabel(imag(xn);subplot(2,2,3);stem(n,abs(xn);xlabel(n);ylabel(abs(xn);subplot(2,2,4);stem(n,angle(xn);xlabel(n);ylabel(angle(xn);w_begin=0;w_step=pi/1600;w_end=2*pi;figure(2); %画出序列的幅度谱、频谱实部、频谱虚部subplot(3,1,1);stem(f,abs(xw);xlabel(f/Hz);ylabel(abs(xw);subplot(3,1,2);stem(f,real(xw);xlabel(f/Hz);ylabel(real(xw);subplot(3,1,3);stem(f,imag(xw);xlabel(f/Hz);ylabel(imag(xw);实验名称:FIR序列、频谱、DFT的性质 姓名:_ _P. 9六、实验结果与分析观察实验结果(数据及图形)的特征,做必要的记录,做出解释。包括:6-1 各种序列的图形(时域)和频谱(频域)各有何特征,给予解释。6-2 DFT物理意义。X(0)、X(1)和X(N-1)的物理意义。6-3 DFT的主要性质。实验结果:2-1-1a 序列的实部、虚部、模、相角 序列的DFT结果序列的频谱实验名称:FIR序列、频谱、DFT的性质 姓名:_ _P. 102-1-1b序列的实部、虚部、模、相角 序列的DFT结果序列的频谱2-1-1c 实验名称:FIR序列、频谱、DFT的性质 姓名:_ _P. 11序列的频谱 观察以上三个序列,发现它们都为正的实序列,所以序列的虚部和相角都为零。观察它们的DFT结果发现实部是共轭偶对称,虚部是共轭奇对称。验证了DFT的对称性质。比较以上三个序列可知,当a越接近1时,频谱越集中在直流分量处。这是因为a越接近于1,序列变化越慢,故在频率为0处频谱值变大。当length越大时,即n取点数越多,频谱越接近实际频谱。因为点数增多,频谱分辨率越高,且抑制了栅栏效应。2-1-2 序列的实部、虚部、模、相角 序列的DFT结果 此序列为一复指数序列,序列的幅度、相角、实部、虚部都不为零。频谱是实指数函数的一个平移。 实验名称:FIR序列、频谱、DFT的性质 姓名:_P. 122-1-3 序列的实部、虚部、模、相角 序列的DFT结果序列的频谱该序列是正弦函数的采样序列,是一个共轭奇对称的实序列,序列的虚部为零,相角在序列取负的地方为。观察序列的DFT结果发现其虚部为共轭奇对称。验证了DFT的对称性质。频谱实部接近0,但不为0,而理论上由于该序列共轭奇对称,实部应该为0。我想这是因为MATLAB在计算正弦函数各点的值时,近似取了小数点后的有限位,造成了误差。观察序列的频谱发现频谱在频率为1Hz处,与此正弦函数频率为1Hz相符合。实验名称:FIR序列、频谱、DFT的性质 姓名:_P. 132-1-4 序列的实部、虚部、模、相角 序列的DFT结果序列的频谱该序列是一个共轭偶对称实序列,虚部为零。相角在序列取值为负的地方为。其频谱实部共轭偶对称,虚部为零。与书本上DFT的对称性质相符。其反应的性质与2-1-3类同。2-1-5a实验名称:FIR序列、频谱、DFT的性质 姓名:_P. 14序列的实部、虚部、模、相角 序列的DFT结果序列的频谱2-1-5b 实验名称:FIR序列、频谱、DFT的性质 姓名:_P. 15序列的频谱2-1-5c 序列的实部、虚部、模、相角 序列的DFT结果序列的频谱2-1-5的三个序列为两个实序列的复合。第一组参数和第三组参数为共轭奇对称实序列。其频谱实部为零,虚部共轭奇对称。与书本上DFT的对称性质相符。观察频谱实验名称:FIR序列、频谱、DFT的性质 姓名:_P. 16可知频谱在1Hz和3Hz处有值,故为两实序列频谱相加,验证了线性性质。取第二组数的2-5-1b序列由于初相位取为/2,使得序列没有对称性。故频谱的实部、虚部都不为0。结果分析:DFT的物理意义:从DTFT角度看,有限长序列的DFT结果包含了N个离散点处的DTFT结果,这N个离散点等间隔地分布在区间0,2)内;如果从Z变换角度看,DFT结果包含了Z平面上N个离散点处的Z变换结果,这N个离散点均匀地分布于单位圆上。X(0)的物理意义是信号直流分量的频谱值。X(1)的物理意义是频率处的幅度和相位。X(N-1)的物理意义也是频率处的幅度和相位。DFT的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论