二次函数一元二次方程.doc_第1页
二次函数一元二次方程.doc_第2页
二次函数一元二次方程.doc_第3页
二次函数一元二次方程.doc_第4页
二次函数一元二次方程.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数与一元二次方程教学任务分析教学目标知识技能使学生学会结合二次函数的图象,判断一元二次方程根的存在性及根的个数,了解二次函数当y=0时与一元二次方程根之间的关系,初步形成用函数的观点处理问题的意识。过程与方法1由具体的一元二次方程的根与对应二次函数的图象与x轴交点横坐标之间的关系来归纳。2从问题出发,多角度探索解决问题的方法,并从中提炼出一元二次方程根的特点与对应二次函数图象特征之间的关系。情感态度与价值观通过探求二次函数的图象与x轴的位置关系和一元二次方程根的情况之间的关系,向学生渗透数形结合的思想,进而提高学生的数学素养。教学重点根的判别式在二次函数的图象中的应用。教学难点把数与形有效结合起来,灵活运用,真正体会求出判别式的值,即可判断交点个数。教法设计问题启迪,互动交流的方法来引导学生探索研究,归纳总结,形成认知结构,培养思维能力。教具准备黑板,电脑,投影板书设计 课题探究题解题过程 新知归纳表格 习题注意事项教学过程设计问题与情境师生行为设计意图活动1由实际问题引出我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0 (m)是抛出时的高度,v0 (m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1)h和t的关系式是什么?(2)小球经过多少秒后落地?提出问题,学生讨论,得出结果:(1)h和t的关系式是什么?h=-5t2+40t(2)小球经过多少秒后落地? -5t2+40t=0注:教师关注学生是否积极参与到教学活动中来。调动学生的积极性,激发好奇心和求知欲。得出:当函数值为0时,二次函数转化为二次方程。活动2一元二次方程的实数根与二次函数图像之间的关系:y=x2+2x,y=x2-2x+1,y=x2-2x+2的图像 提问设计:(1)每个图象与x轴有几个交点?(2)交点的坐标如何求?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?(4)一元二次方程x2+2x=0,x2-2x+1=0有几个根?一元二次方程x2-2x+2=0有根吗?由课堂提问引导学生讨论,思考,得出结论。1 二次函数图像与x轴交点的情况:二次函数y=ax2+bx+c的图象和x轴交点有三种情况: 有两个交点, 有一个交点, 没有交点.2 交点的坐标如何求:当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是令y=0时自变量x的值。3二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?方程的解就是抛物线与x轴的两个交点的横坐标。4.一元二次方程x2+2x=0,x2-2x+1=0有几个根?一元二次方程x2-2x+2=0有根吗?利用函数图像来判断一元二次方程根的情况提出问题,解决问题,学习新知,提高学生逻辑推理能力。活动31探究题:求二次函数图象y=x2-3x+2与x轴的交点A、B的坐标。2进而让学生总结二次函数图像与x轴交点,一元二次方程的根,一元二次方程根的判别式三者之间的关系1教师板书探究题解题过程:解:A、B在x轴上, 它们的纵坐标为0, 令y=0,则x2-3x+2=0 解得:x1=1,x2=2; A(1,0) , B(2,0)2让学生填写表格:二次函数y=ax2+bx+c的图象和x轴交点一元二次方程ax2+bx+c=0的根一元二次方程ax2+bx+c=0根的判别式=b2-4ac有两个交点有两个相异的实数根b2-4ac 0有一个交点有两个相等的实数根b2-4ac = 0没有交点没有实数根b2-4ac 0通过探究题及时巩固所学知识,培养学生应用知识能力,同时归纳总结的能力。并了解学生学习效果。活动4基础训练:1、已知抛物线y=x2-6x+a的顶点在x轴上,则a= ;若抛物线与x轴有两个交点,则a的范围是 ;2、已知抛物线y=x2-3x+a+1与x轴最多只有一个交点,则a的范围是 。3、已知抛物线y=x2+px+q与x轴的两个交点为(-2,0),(3,0),则p= ,q= 。4、判断下列各抛物线是否与x轴相交,如果相交,求出交点的坐标。(1)y=6x2-2x+1 (2)y=-15x2+14x+8(3)y=x2-4x+45、抛物线y=ax2+bx+c(a0)的图象全部在轴下方的条件是( )(A)a0 b2-4ac0 (B)a0 b2-4ac0(C)a0 b2-4ac0 (D)a0 b2-4ac06已知二次函数ax2,下列说法不正确的是()当,时,总取负值当,时,随的增大而减小当时,函数图象有最低点,即有最小值当,ax2 的对称轴是轴拓展延伸:yx091-5二次函数y=ax2+bx+c(a0)的图像如图:写出ax2+bx+c=0的两根写出不等式ax2+bx+c0的解集若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围教师提醒几点注意:1函数图像与x轴有一个交点:顶点在x轴上;函数图像与x轴无交点:图象全部在x轴上(下)方。2若是方程的解,则有,若是二次函数的图象与x轴交点的横坐标,则也有 订正答案:19,a 0(2)一元二次方程ax2+bx+c0有两个相等的实数根,二次函数y=ax2+bx+c 的图象与x轴只有1 个交点, = 0(3)一元二次方程ax2+bx+c0无实数根,函数y=ax2+bx+c 的图象与x轴无 交点, 0思考:如何证明二次函数的图象始终在x轴的上方?总结回忆学习内容,帮助学生归纳、巩固课堂的知识。 教学设计说明:根据本节内容,采用问题启迪,互动交流的方法来引导学生探索研究,归纳总结,形成认知结构,培养思维能力。为此,我以简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论