




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
目录Contents 考情精解读 考点1 考点2 A 知识全通关 B 题型全突破 C 能力大提升 考法1 考法2 考法4 考法3 易错1 易错2 考情精解读 考纲解读 命题趋势 命题规律 1 了解逻辑联结词 或 且 非 的含义 2 理解全称量词与存在量词的意义 3 能正确地对含有一个量词的命题进行否定 数学第一章 第三讲逻辑联结词 全称量词与存在量词 考纲解读 命题规律 命题趋势 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 考纲解读 命题规律 返回目录 1 热点预测全称命题和特称命题的否定仍然是高考考查的重点 对逻辑联结词的考查 常以函数 三角函数 不等式为载体命题 题型以选择题为主 分值为5分 2 趋势分析2018年高考仍将以全称命题 特称命题的否定和命题真假判断为主要考点 重点考查学生的逻辑推理能力 命题趋势 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 知识全通关 考点1逻辑联结词 继续学习 1 概念用联结词 且 把命题p和命题q联结起来 得到复合命题 p且q 记作p q 用联结词 或 把命题p和命题q联结起来 得到复合命题 p或q 记作p q 对命题p的结论进行否定 得到复合命题 非p 记作 p 2 复合命题的真假判断 p且q p或q 非p 形式的命题的真假性可以用真值表来确定 数学第一讲集合 说明确定p q p q p真假的记忆口诀如下 p q 见假即假 p q 见真即真 p与 p 真假相反 数学第一章 第三讲逻辑联结词 全称量词与存在量词 辨析比较 命题的否定与否命题的区别 1 定义 命题的否定是直接对命题的结论进行否定 而否命题则是对原命题的条件和结论分别否定 即命题 若p 则q 的否定为 若p 则 q 而否命题为 若 p 则 q 2 与原命题的真假关系 命题的否定的真假与原命题的真假总是相对的 即一真一假 而否命题的真假与原命题的真假无必然的联系 数学集合与常用逻辑用语 选修一 继续学习 数学第一章 第三讲逻辑联结词 全称量词与存在量词 考点2全称命题与特称命题 1 全称量词与存在量词 数学集合与常用逻辑用语 选修一 继续学习 2 全称命题与特称命题 数学第一章 第三讲逻辑联结词 全称量词与存在量词 数学集合与常用逻辑用语 选修一 继续学习 3 命题的否定 1 含有一个量词的命题的否定全称命题的否定是特称命题 特称命题的否定是全称命题 如下所示 2 复合命题的否定 p 的否定是 p p q 的否定是 p q p q 的否定是 p q 数学第一章 第三讲逻辑联结词 全称量词与存在量词 题型全突破 继续学习 考法示例1已知命题p1 当x y R时 x y x y 成立的充要条件是xy 0 p2 函数y 2x 2 x在R上为减函数 则命题q1 p1 p2 q2 p1 p2 q3 p1 p2和q4 p1 p2 中 真命题是A q1 q3B q2 q3C q1 q4D q2 q4 数学第一讲集合 考法指导要判断一个含有逻辑联结词的命题 复合命题 的真假 其步骤如下 1 判断复合命题的结构 2 判断构成这个命题的每个简单命题的真假 3 依据 或 见真即真 且 见假即假 非 真假相反 作出判断即可 考法1判断含有逻辑联结词的命题的真假 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 思路分析 解析 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 同理 当x 0 时 函数单调递减 故p2是假命题 由此可知 q1真 q2假 q3假 q4真 答案C 数学第一章 第三讲逻辑联结词 全称量词与存在量词 考法2由含有逻辑联结词的命题的真假求参数的取值范围 继续学习 考法指导根据命题的真假求参数的取值范围的方法步骤 1 求出当命题p q为真命题时所含参数的取值范围 2 根据复合命题的真假判断命题p q的真假性 3 根据命题p q的真假情况 利用集合的交集和补集的运算 求解参数的取值范围 数学第一讲集合 考法示例2已知命题p 方程x2 mx 1 0有两个不相等的正实数根 命题q 方程4x2 4 m 2 x 1 0无实数根 若 p或q 为真命题 则实数m的取值范围是 思路分析 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 返回目录 突破攻略 此类题目一般会出现 p或q 为真 p或q 为假 p且q 为真 p且q 为假等条件 解题时应先将这些条件转化为p q的真假 p q的真假有时是不确定的 需要讨论 但无论哪种情况 一般都是先假设p q为真 求出参数的取值范围 当它们为假时取补集即可 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 考法3判断全称命题与特称命题的真假 继续学习 考法指导1 全称命题真假的判断 1 要判定全称命题 x M p x 是真命题 必须使p x 对集合M中的每个元素x都成立 2 要判定全称命题 x M p x 是假命题 只需举出一个反例 即在集合M中找到一个元素x0 使得p x0 不成立 那么这个全称命题就是假命题 2 特称命题真假的判断 1 要判定特称命题 x0 M p x0 是真命题 只需找到集合M中的一个元素x0 使p x0 成立即可 2 要判定一个特称命题是假命题 需对集合M中的每一个元素x验证p x 不成立 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 答案D 数学第一章 第三讲逻辑联结词 全称量词与存在量词 返回目录 突破攻略 全称命题为真以及特称命题为假都需要给予严格的证明 其中常用的方法为反证法 反证法的思想源于原命题与逆否命题同真同假 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 考法4含有一个量词的命题的否定 继续学习 考法指导一般地 写含有一个量词的命题的否定 先要明确这个命题是全称命题还是特称命题 并找到其量词的位置及相应结论 然后把命题中的全称量词改成存在量词或把存在量词改成全称量词 同时否定结论 数学第一讲集合 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 解析原命题是特称命题 的否定是 的否定是 因此该命题的否定是 x R x2 2x 1 0 答案C 考法示例5命题p x R ax2 ax 1 0 若 p是真命题 则实数a的取值范围是A 0 4 B 0 4 C 0 4 D 0 4 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 思路分析 答案D 点评含有量词的命题的含参问题常将命题的真假转化为不等式恒成立或不等 式有解 方程有解或无解 函数最值等问题 从而根据函数性质 不等式等内容解决 数学第一章 第三讲逻辑联结词 全称量词与存在量词 能力大提升 易混易错 继续学习 数学第一讲集合 易错1 或 且 非 理解不准致误 在判断含逻辑联结词的命题的真假时很容易因为理解不准确而出现错误 要正确掌握 或 且 非 的含义并借助真值表判断命题的真假 示例6已知命题p及命题q 则命题 p q 为假是命题 p q 为假的A 充分不必要条件B 必要不充分条件C 充要条件D 既不充分也不必要条件 数学第一章 第三讲逻辑联结词 全称量词与存在量词 继续学习 数学第一讲集合 真假不确定 若命题 p q 为假 则命题p及命题q均为假 所以命题 p q 一定为假 所以命题 p q 为假是命题 p q 为假的必要不充分条件 解析若命题 p q 为假 则命题p及命题q至少有一个为假 命题 p q 的 答案B 点评可以借助集合的 交 并 补 运算来理解逻辑联结词 且 或 非 同时注意符号 的区别和其代表的意义 数学第一章 第三讲逻辑联结词 全称量词与存在量词 返回目录 数学第一讲集合 对于含分式不等式的命题的否定 一定要注意 除了改变不等式的符号 还要加上分式无意义的情况 如果要彻底避免这类问题引发的错误 我们可以先求出命题为真时变量 参数 所表示的范围 再对范围进行否定 易
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初识自媒体运营技巧实战模拟题集
- 2025年七年级数学下册课程计划
- 中、短波广播天线工作业指导书
- 2025-2030中国消费级无人机市场渗透率及商业模式创新报告
- 工业厂房施工机械进场计划
- 四年级数学(小数加减运算)计算题专项练习与答案汇编
- 缝纫布料肌理知识培训班课件
- 缝盘专业知识培训课件
- 煤矿急救器材管理办法
- 爱心医院后勤管理办法
- 铁路专项病害课件
- 开学安全教育课件
- 2025年学历类自考专业(学前教育)学前儿童发展-学前教育原理参考题库含答案解析(5套)
- 2025-2026学年人教版(2024)初中化学九年级上册教学计划及进度表
- 日本设备销售合同范本
- (2024)大学生宪法知识竞赛题库及答案
- 2025山西阳泉平定县从社区专职网格员中选聘社区专职工作人员考试备考试题及答案解析
- 高中英语3500词汇表
- 《绣球》课件
- 遥感图像的目视判读
- 轧制原理-PPT课件
评论
0/150
提交评论