




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数形结合思想在函数解题中的应用研究数学学院 数学与应用数学(师范)专业 2009级 陈欢指导老师 胡春燕 摘 要:数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是数学解题中常用的思想方法之一。论文结合初等数学教材的实际情况,阐述了数形结合思想在中学数学中的重要性;并且通过大量的实例对形结合思想在解函数题中的应用进行了研究与分析。关键词:数形结合;函数;应用 Abstract: The thought of symbolic-graphic combination is the idea which solves mathematic problems according to the correspondence between symbolic and graphic and the mutual transformation of symbolic and graphic. It is one of the common ways to solve mathematical problems. Combining with the actual situation of elementary mathematics teaching material, the thesis expounded the importance of the thought of symbolic-graphic in secondary school mathematics, and it analyzed the application of symbolic-graphic combining idea in solving function problem through a number of examples. Key words: the number form combining; function; application数形结合思想的基本介绍数和形是数学研究客观问题的两个方面,数侧重研究物体的数量方面,具有精确性;而形侧重研究物体的形状方面,具有直观性。数形结合思想就是把两者充分地结合起来,即把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维结合起来,换言之即,用数来反映空间形式,用形来说明数量关系,这样可使复杂的问题简单化,抽象的问题具体化,从而起到优化解题途径的目的。数形结合思想是解析法、三角法、复数法、向量法、图解法等一系列方法的概括,其思维策略是把形与数这两个数学研究的基本对象联系起来作综合考察,充分发挥代数与几何等学科理论各自的优势来解决问题,把这一类方法的基本精神概括上升,就形成了数形结合的思想数形结合思想,通俗的说,就是代数与几何相结合的思想。它是一种通过沟通“数”与“形”的某些因素发挥“数”与“形”的优点,实现“数”与“形”的和谐统一,从而解决数学问题的思想。2数形结合思想在初等数学中的地位与作用所谓数形结合是指通过实现数量关系与图形性质的相互转化,使抽象思维和形象思维相互作用,将抽象的数量关系和直观的图形结合起来研究数学问题。数形结合是一种极具数学特点的信息转换,一方面用数量的抽象性质来说明形象的事实;另一方面又用图形的性质来说明数量的抽象性质。因此,数形结合是一类极为重要的转化,其着眼点在代数与几何的沟通上。2.1数形结合思想在初等数学中的地位数学思维能力是学生分析数学问题和解决数学问题的重要基础,而数与形的结合贯穿于数学发展的进程中,是数学发展中的两大基石。数形结合方法是中学数学中重要基本思想方法之一,是数学的本质特征2。数形结合,是求解数学问题的一种常用思维方法,很多问题使用数形结合的方法都能迎刃而解,且解法简洁。数形结合的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。2.2数形结合思想在初等数学中的实现所谓数形结合是指通过实现数量关系与图形性质的相互转化,使抽象思维和形象思维相互作用,将抽象的数量关系和直观的图形结合起来研究数学问题。数形结合是一种极具数学特点的信息转换,一方面用数量的抽象性质来说明形象的事实;另一方面又用图形的性质来说明数量的抽象性质。因此,数形结合是一类极为重要的转化。而数形结合的实现通常与以下内容有关3:实数与数轴上的点的对应关系;曲线与方程的对应关系;函数与图像的对应关系;以几何元素和几何条件为背景,建立起来的概念,如三角函数等;所给的等式或代数式的结构有明显的几何意义。2.3数形结合思想在初等数学中的作用数形结合的思想方法应用广泛,常见的比如在解方程和不等式问题中,在求解三角函数问题中,在求函数的定义域、值域等问题中数形结合思想都具有极其重要的作用。运用数形结合思想,不仅直观的发现解题途径,而且能避免复杂的计算和推理,大大的简化了解题过程,尤其在解选择题和填空题中更是节约了不少时间。3数形结合思想在中学函数题中的应用分析函数的图像及性质常常是解决问题的突破口, 函数的图像是函数解析式的“形”的表象,它以图形的方式来刻画函数中变量之间的变化关系。通过函数的图像研究函数的性质,是初等阶段学习函数理论的重要方法,既有助于理解和记忆函数的性质,也有助于应用函数的性质分析问题和解决问题。3.1 数形结合法求函数定义域定义域是函数三大要素之一,求函数的定义域是函数中最基本的问题,面对求函数的定义域问题,在看到题目后,首先我们应该把所有使函数有意义的条件列出,待求出所有满足条件的解后用相应的图形表示出来,再逐一判断,这样才能尽量避免失误,得出正确的答案4。例 3.15 已知函数f(x)的定义域是a ,b其中a0b,求函数g(x)=f(-x)+f(x)的定义域。图 3-1分析:由题可知g(x)的定义域为f(-x)和f(x)的交集。我们假设g(x)的定义域为N ,f(-x)和f(x)的定义域分别为A、B,那么N=AB,利用数轴分析得知,阴影部分即为所求。解 函数f(x)的定义域为a ,baxb若使f(x)恒有意义,必须有axb,即有bxaa0b b0a又|a|b0 .ab函数g(x)的定义域x|axbx|bxa=x|bxb解题策略:这样的题目若是选择题或者填空,那么图形一画那就简单明了,不用解题步骤,若是答题求解,则图形有助于理解。例 3.2 求函数的定义域。分析:若要解决该函数的定义域,则有,要解决此类不等式的解集,需要借助图像: 图 3-2由图像可以看出,若要,只需得或。而由得:则该函数的定义域即为:。3.2 数形结合法求函数值域数形结合法求函数的值域就是将函数与图形有机地结合起来,利用图形的直观性求出函数的值域。例 3.3 求函数的值域。分析:看到所求函数为二次函数,由于函数是非单调的,所以并不能代入端点值去求出值域,因此需要借助图像来观察,如图:3 -1-1 图3-3借助图像可知道,该函数的值域为。解题策略:对于此类问题是学生的常见出错点,学生们习惯于直接带入端点值得出其值域,因此对于给定区间上的二次函数值域问题,培养学生数形结合的思想是非常重要的。 例 3.4 求函数y=|x-3|x+5|的值域。分析:就自变量x的范围讨论去掉绝对值,将函数表示为分段函数,画出分段函数的图象,由图象即可得y的范围: 图3-4函数的图象如图,那么可得y-8,8.解题策略:数形结合能将抽象的问题直观化.形象化,能使问题灵活直观地获解,在数学学习中要注意把握善于运用这种数学思想。3.3 数形结合法求函数最值所谓数形结合求解最值,一般是将一些抽象的解析式赋予几何意义,然后通过图形的属性及数量关系进行“数”与“形”的信息转换,把代数的问题等价性的用几何的方法来求解,使之求解更简单、快捷。例 3.5 求函数的最小值。分析: 通过观察已知函数的形式与结构,不难发现这是两个点间的距离之和,即可把原函数化为,原题即转化成“已知点P(x,0),求它到两定点A(0,1),B(2,1)的距离之和的最小值”,从而结合图形,即可解决。解 原函数化为,如图:yxP0A(0,-1)B(2,1)A(0,1)P 图3-5函数f(x)的最小值即为|AP|+|PB|的最小值。作A点关于x轴的对称即点,即易知,当共线时,有最小值即解题策略:对于此题,原函数是二次根式,要求他的最值若直接用代数方法做比较麻烦,但在这儿我们根据解析式把代数问题几何化,由图形来解决此类问题,既方便学生理解,步骤又简单。例 3.6 对于每个实数x设f(x)是中的最小值,则f(x)最大值为 。分析:中谁最小呢?这与x的取值有关,在同一坐标系里作出函数,的图象。y=-2x+4y=4x+1y=x+2 图3-6如图所示,可以很明显的看出;x为何值时4x+1最小;x为何值时x+2最小;以及x为何值时最小,并由此得出f(x)的图象。易见f(x)的最大值是与交点的纵坐标,那么解方程组 得所以f(x)的最大值是。解题策略:借助函数的图象,不仅很好的理解了题意,而且轻而易举的得出了f(x)的最大值。否则需要解不等式组的方程求得f(x)的分段表达式,并求出每段上的最大值,从中选出最大值,那将是很烦琐的,环节很多,出错的可能性也大大增加。3.4 数形结合法求函数解析式例3.7 已知: 二次函数的图象与x轴交于 , , , 与y轴交于点C, 且满足,求这个二次函数的解析式。 分析:根据题意, 结合“数”及画出“ 图形” , 找到A,B,C 三点的大致位置 , 得出AO,BO,CO, 然后利用一元二次方程的根与系数的关系求解6。y 解 。x=即 图3-7 解得 二次函数的解析式为。解题策略:函数解析式中含有参数,因此我们只能画出大致的函数图象,那么参数之间的关系就一目了然,便于解题。3.5 数形结合法求函数零点个数求函数零点的个数是函数零点知识的常见题型,例如:给出函数,根据其定义域求函数零点的个数。这种题型之中的函数一般为一个复杂函数,解方程比较繁琐甚至不能达到目的,所以我们常用数形结合来解这类问题,把复合方程转化成基本初等函数相等的形式,求函数的公共解、函数图像的交点,正确地作出图像,从而判断出结果。例 3.8 求函数 在0,10上的零点的个数。分析:这是一道典型的求函数零点、方程的根的问题。它是由两个初等函数组成的复杂函数,利用求解方程的根或画函数图象,观察它与x轴的交点的方法都不易实现。但若转化成求解方程的根、即求函数与的图象的交点,则由复杂函数的问题转化成了简单的初等函数的问题,求解起来简单易行7。解 求函数在0,10上的零点可以转化成方程在 x0,10的解。即函数与在x0,10交点,作出函数图象,观察图象的交点。yx图3-8由图象可知,函数与在x0,10交点的个数为3个。所以函数 在0,10上的零点的个数为3。解题策略:函数的零点和方程的根的问题都可以采用如上做法:用“数形结合”的方法,先画出函数的图象,由图象可直观得解。例 3.9 函数的零点的个数是( ) A3个 B2个 C1个 D0个分析:函数的零点的个数就是方程的解的个数,要通过数形结合,画出函数的图象的交点的个数。 yx图3-9解:的零点,即使,作函数的图象和函数的图象如图所示,有两个交点,所以函数有两个零点,故选B。4小结数形结合俨然已经成为思考数学问题的一种模式,是数学教学内容的主线之一。在数学问题中数与形,互为工具互为研究对象,运用好数形结合思想去解题,由数思形,由形思数,可以将一些看似复杂的问题变得简单,使一些无从下手的问题迎刃而解。数形结合把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来可以更好地提示数学事物的本质和规律。当然,“数形结合”的思想并非通过几个例题就能快速的掌握,由于它具有很大的灵活性、创造性。因此在实际运用中应多方位、多角度的去思考、探索,选用合理、恰当的途径,以求取事半功倍的效果。要掌握其精髓,必须具有雄厚的基础知识和熟练的基本技巧。 数形结合思想是中学数学中的重要数学思想之一,渗透在中学数学的各个环节中。对培养学生的思维品质,提高思维的深刻性和创新能力具有非常重要的意义。参考文献:1 赵发源.九年义务教育初中数学教材中的数学思想和方法J.甘肃教育,1995.2 孟灵芬.数形结合思想在初中数学中的地位和作用J.教育艺术,2008.3 岑惠燕.数形结合思想的教学意义G.新课程(综合版),2011.4 吴方淼. 运用数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 防止导管相关感染护理查房
- 呼吸机使用者的安全护理实践
- 静脉留置针更换的安全性评估
- 脊髓损伤患者功能性护理查房
- 肺癌患者心理干预护理查房
- 2025四川托普信息技术职业学院招聘笔试真题参考答案详解
- 党史考试试题及答案
- 2025年思茅市税务系统遴选面试真题带详解含答案
- 市场运行管理课件
- 工程资料报验课件
- 钢箱拱钢箱梁吊装施工方案
- GB/T 23821-2022机械安全防止上下肢触及危险区的安全距离
- MT/T 199-1996煤矿用液压钻车通用技术条件
- GB/T 7673.3-2008纸包绕组线第3部分:纸包铜扁线
- GB/T 25980-2010道路车辆旅居挂车和轻型挂车的连接球尺寸
- GB/T 24218.1-2009纺织品非织造布试验方法第1部分:单位面积质量的测定
- 手术讲解模板:肩关节全部置换术课件
- 反恐安全会议记录1
- 食堂伙食收据样稿
- DB4409∕T 06-2019 地理标志产品 化橘红
- 《悦纳自己》
评论
0/150
提交评论