广东农垦经济和社会发展“十二五”规.ppt_第1页
广东农垦经济和社会发展“十二五”规.ppt_第2页
广东农垦经济和社会发展“十二五”规.ppt_第3页
广东农垦经济和社会发展“十二五”规.ppt_第4页
广东农垦经济和社会发展“十二五”规.ppt_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ComparisonMethodology MeaningofasampleConfidenceintervalsMakingdecisionsandcomparingalternativesSpecialconsiderationsinconfidenceintervalsSamplesizes EstimatingConfidenceIntervals TwoformulasforconfidenceintervalsOver30samplesfromanydistribution z distributionSmallsamplefromnormallydistributedpopulation t distributionCommonerror usingt distributionfornon normalpopulationCentralLimitTheoremoftensavesus ThezDistribution Intervaloneithersideofmean Significancelevel issmallforlargeconfidencelevelsTablesofzaretricky becareful ThetDistribution Formulaisalmostthesame Usableonlyfornormallydistributedpopulations Butworkswithsmallsamples MakingDecisions Whydoweuseconfidenceintervals SummarizeserrorinsamplemeanGiveswaytodecideifmeasurementismeaningfulAllowscomparisonsinfaceoferrorButremember at90 confidence 10 ofsamplemeansdonotincludepopulationmean TestingforZeroMean Ispopulationmeansignificantlynonzero Ifconfidenceintervalincludes0 answerisnoCantestforanyvalue meanofsumsissumofmeans Example ourheightsamplesareconsistentwithaverageheightof170cmAlsoconsistentwith160and180 ComparingAlternatives OftenneedtofindbettersystemChoosefastestcomputertobuyProveouralgorithmrunsfasterDifferentmethodsforpaired unpairedobservationsPairedifithtestoneachsystemwassameUnpairedotherwise ComparingPairedObservations Treatproblemas1sampleofnpairsForeachtestcalculateperformancedifferenceCalculateconfidenceintervalfordifferencesIfintervalincludeszero systemsaren tdifferentIfnot signindicateswhichisbetter Example ComparingPairedObservations Dohomebaseballteamsoutscorevisitors Samplefrom9 4 96 Example ComparingPairedObservations H V2 2 756 1 767321 16Mean1 4 90 interval 0 75 3 6 Can trejectthehypothesisthatdifferenceis0 70 intervalis 0 10 2 76 ComparingUnpairedObservations AsampleofsizenaandnbforeachalternativeAandBStartwithconfidenceintervalsIfnooverlap Systemsaredifferentandhighermeanisbetter forHBmetrics IfoverlapandeachCIcontainsothermean SystemsarenotdifferentatthislevelIfclosecall couldlowerconfidencelevelIfoverlapandonemeanisn tinotherCIMustdot test Thet test 1 1 Computesamplemeansand2 Computesamplestandarddeviationssaandsb3 Computemeandifference 4 Computestandarddeviationofdifference Thet test 2 5 Computeeffectivedegreesoffreedom 6 Computetheconfidenceinterval 7 Ifintervalincludeszero nodifference ComparingProportions Ifkofntrialsgiveacertainresult thenconfidenceintervalisIfintervalincludes0 5 can tsaywhichoutcomeisstatisticallymeaningfulMusthavek 10togetvalidresults SpecialConsiderations SelectingaconfidencelevelHypothesistestingOne sidedconfidenceintervals SelectingaConfidenceLevel Dependsoncostofbeingwrong90 95 arecommonvaluesforscientificpapersGenerally usehighestvaluethatletsyoumakeafirmstatementButit sbettertobeconsistentthroughoutagivenpaper HypothesisTesting Thenullhypothesis H0 iscommoninstatisticsConfusingduetodoublenegativeGiveslessinformationthanconfidenceintervalOftenhardertocomputeShouldunderstandthatrejectingnullhypothesisimpliesresultismeaningful One SidedConfidenceIntervals Two sidedintervalstestformeanbeingoutsideacertainrange see errorbands inpreviousgraphs One sidedtestsusefulifonlyinterestedinonelimitUsez1 ort1 ninsteadofz1 2 ort1 2 ninformulas SampleSizes BiggersamplesizesgivenarrowerintervalsSmallervaluesoft vasnincreasesinformulasButsamplecollectionisoftenexpensiveWhatistheminimumwecangetawaywith Startwithasmallnumberofpreliminarymeasurementstoestimatevariance ChoosingaSampleSize Togetagivenpercentageerror r Here zrepresentseitherzortasappropriateForaproportionp k n ExampleofChoosingSampleSize Fiverunsofacompilationtook22 5 19 8 21 1 26 7 20 2secondsHowmanyrunstoget 5 confidenceintervalat90 confidencelevel 22 1 s 2 8 t0 95 4 2 132 LinearRegressionModels Whatisa good model EstimatingmodelparametersAllocatingvariationConfidenceintervalsforregressionsVerifyingassumptionsvisually WhatIsa Good Model Forcorrelateddata modelpredictsresponsegivenaninputModelshouldbeequationthatfitsdataStandarddefinitionof fits isleast squaresMinimizesquarederrorWhilekeepingmeanerrorzeroMinimizesvarianceoferrors Least SquaredError IfthenerrorinestimateforxiisMinimizeSumofSquaredErrors SSE Subjecttotheconstraint EstimatingModelParameters BestregressionparametersarewhereNoteerrorinbook ParameterEstimationExample Executiontimeofascriptforvariousloopcounts 6 8 2 32 xy 88 54 x2 264b0 2 32 0 29 6 8 0 35 GraphofParameterEstimationExample VariantsofLinearRegression Somenon linearrelationshipscanbehandledbytransformationsFory aebxtakelogarithmofy doregressiononlog y b0 b1x letb b1 Fory a blog x takelogofxbeforefittingparameters letb b1 a b0Fory axb takelogofbothxandy letb b1 AllocatingVariation Ifnoregression bestguessofyisObservedvaluesofydifferfrom givingrisetoerrors variance Regressiongivesbetterguess buttherearestillerrorsWecanevaluatequalityofregressionbyallocatingsourcesoferrors TheTotalSumofSquares Withoutregression squarederroris TheSumofSquaresfromRegression RecallthatregressionerrorisErrorwithoutregressionisSSTSoregressionexplainsSSR SST SSERegressionqualitymeasuredbycoefficientofdetermination EvaluatingCoefficientofDetermination ComputeComputeCompute ExampleofCoefficientofDetermination Forpreviousregressionexample y 11 60 y2 29 79 xy 88 54 SSE 29 79 0 35 11 60 0 29 88 54 0 05SST 29 79 26 9 2 89SSR 2 89 05 2 84R2 2 89 0 05 2 89 0 98 StandardDeviationofErrors VarianceoferrorsisSSEdividedbydegreesoffreedomDOFisn 2becausewe vecalculated2regressionparametersfromthedataSovariance meansquarederror MSE isSSE n 2 Standarddeviationoferrorsissquareroot CheckingDegreesofFreedom Degreesoffreedomalwaysequate SS0has1 computedfrom SSThasn 1 computedfromdataand whichusesup1 SSEhasn 2 needs2regressionparameters So ExampleofStandardDeviationofErrors Forourregressionexample SSEwas0 05 soMSEis0 05 3 0 017andse 0 13Notehighqualityofourregression R2 0 98se 0 13Whysuchanicestraight linefit ConfidenceIntervalsforRegressions Regressionisdonefromasinglepopulationsample sizen DifferentsamplemightgivedifferentresultsTruemodelisy 0 1xParametersb0andb1arereallymeanstakenfromapopulationsample CalculatingIntervalsforRegressionParameters Standarddeviationsofparameters Confidenceintervalsarebitsbiwherethasn 2degreesoffreedom ExampleofRegressionConfidenceIntervals Recallse 0 13 n 5 x2 264 6 8SoUsinga90 confidencelevel t0 95 3 2 353 RegressionConfidenceExample cont d Thus b0intervalisNotsignificantat90 Andb1isSignificantat90 andwouldsurviveeven99 9 test ConfidenceIntervalsforNonlinearRegressions Fornonlinearfitsusingexponentialtransformations ConfidenceintervalsapplytotransformedparametersNotvalidtoperforminversetransformationonintervals ConfidenceIntervalsforPredictions PreviousconfidenceintervalsareforparametersHowcertaincanwebethattheparametersarecorrect PurposeofregressionispredictionHowaccuratearethepredictions Regressiongivesmeanofpredictedresponse basedonsamplewetook PredictingmSamples StandarddeviationformeanoffuturesampleofmobservationsatxpisNotedeviationdropsasm Varianceminimalatx Uset quantileswithn 2DOFforinterval ExampleofConfidenceofPredictions Usingpreviousequation whatispredictedtimeforasinglerunof8loops Time 0 35 0 29 8 2 67Standarddeviationoferrorsse 0 1390 intervalisthen VerifyingAssumptionsVisually Regressionsarebasedonassumptions LinearrelationshipbetweenresponseyandpredictorxOrnonlinearrelationshipusedinfittingPredictorxnonstochasticanderror freeModelerrorsstatisticallyindependentWithdistributionN 0 c forconstantcIfassumptionsviolated modelmisleadingorinvalid TestingLinearity Scatterplotxvs ytoseebasiccurvetype Linear PiecewiseLinear Outlier Nonlinear Power TestingIndependenceofErrors Scatter plot iversusShouldbenovisibletrendExamplefromourcurvefit MoreonTestingIndependence MaybeusefultoploterrorresidualsversusexperimentnumberInpreviousexample thisgivessameplotexceptforxscalingNofoolprooftests TestingforNormalErrors Preparequantile quantileplotExampleforourregression TestingforConstantStandardDeviation Tongue twiste

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论