高三数学一轮复习3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升第8章立体几何第四讲直线平面平行的判定及其性质课件文_第1页
高三数学一轮复习3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升第8章立体几何第四讲直线平面平行的判定及其性质课件文_第2页
高三数学一轮复习3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升第8章立体几何第四讲直线平面平行的判定及其性质课件文_第3页
高三数学一轮复习3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升第8章立体几何第四讲直线平面平行的判定及其性质课件文_第4页
高三数学一轮复习3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升第8章立体几何第四讲直线平面平行的判定及其性质课件文_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

目录Contents 考情精解读 考点1 考点2 A 知识全通关 B 题型全突破 C 能力大提升 考法1 考法2 专题 考情精解读 考纲解读 命题趋势 命题规律 1 以立体几何的有关定义 公理和定理为出发点 认识和理解空间中线面平行 面面平行的有关性质与判定定理 并能够证明相关性质定理 2 能运用线面平行 面面平行的判定及性质定理证明一些空间图形的平行关系的简单命题 数学第四讲直线 平面平行的判定及其性质 考纲解读 命题规律 命题趋势 数学第四讲直线 平面平行的判定及其性质 考纲解读 命题规律 命题趋势 数学第四讲直线 平面平行的判定及其性质 考纲解读 命题规律 返回目录 1 热点预测主要考查平行的判定与性质 其中线线平行 线面平行 面面平行的相互转化是高考的热点 以选择题 填空题或解答题的一问呈现 分值4 6分 2 趋势分析以柱体或锥体为载体 考查推理论证能力和空间想象能力 关于平行中的存在性与探索性问题在2018年高考复习时应引起重视 命题趋势 数学第四讲直线 平面平行的判定及其性质 知识全通关 考点一直线与平面平行的判定与性质 继续学习 数学第四讲直线 平面平行的判定及其性质 1 直线与平面平行的判定定理自然语言 平面外一条直线与此平面内的一条直线平行 则该直线与此平面平行 简称 线线平行 则线面平行 图形语言 如图8 4 1所示 图8 4 1符号语言 a b 且a b a 注意 在推证线面平行时 一定要强调直线a不在平面内 直线b在平面内 且a b 否则会出现错误 数学第四讲直线 平面平行的判定及其性质 继续学习 2 直线与平面平行的性质定理自然语言 一条直线与一个平面平行 则过这条直线的任一平面与此平面的交线与该直线平行 简称 线面平行 则线线平行 图形语言 如图8 4 2所示 图8 4 2符号语言 a a b a b 注意 一条直线平行于一个平面 它可以与平面内的无数条直线平行 但这条直线与平面内的任意一条直线可能平行 也可能异面 数学第四讲直线 平面平行的判定及其性质 名师提醒 1 a 的判定定理和性质定理使用的区别 如果结论中有a 则要用判定定理 在 内找与a平行的直线 若条件中有a 则要用性质定理 找 或作 过a且与 相交的平面 2 当直线与平面平行时 直线上任一点到平面的距离叫作直线与平面的距离 继续学习 数学第四讲直线 平面平行的判定及其性质 继续学习 考点2平面与平面平行的判定与性质 1 平面与平面平行的判定定理自然语言 一个平面内的两条相交直线与另一个平面平行 则这两个平面平行 简称 线面平行 则面面平行 图形语言 如图8 4 3所示 图8 4 3符号语言 a b a b P a b 说明 1 如果一个平面内的两条平行直线与另一个平面平行 则这两个平面相交或平行 2 要证面面平行需证线面平行 要证线面平行需证线线平行 因此 面面平行 问题最终可转化为 线线平行 问题 数学第四讲直线 平面平行的判定及其性质 继续学习 2 平面与平面平行的性质定理自然语言 如果两个平行平面同时和第三个平面相交 那么它们的交线平行 简称 面面平行 则线线平行 图形语言 如图8 4 4所示 图8 4 4符号语言 a b a b 返回目录 数学第四讲直线 平面平行的判定及其性质 规律总结 由两个平面平行的性质定理得到的重要结论1 两个平面平行 其中一个平面内的任意一条直线平行于另一个平面 2 夹在两个平行平面之间的平行线段长度相等 3 经过平面外一点有且只有一个平面与已知平面平行 4 两条直线被三个平行平面所截 截得的对应线段成比例 5 如果两个平面分别平行于第三个平面 那么这两个平面互相平行 6 如果一个平面内有两条相交直线分别平行于另一个平面内的两条直线 那么这两个平面平行 题型全突破 考法1线面平行的判定与性质 继续学习 数学第四讲直线 平面平行的判定及其性质 考法指导证明直线与平面平行的常用方法 1 定义法 证明直线与平面没有公共点 通常要借助于反证法来证明 2 判定定理法 在利用判定定理时 关键是找到平面内与已知直线平行的直线 可先直观判断题中是否存在这样的直线 若不存在 则需作出直线 常考虑利用三角形的中位线 平行四边形的对边平行或过已知直线作一平面 找其交线进行证明 3 利用面面平行的性质定理 直线在一平面内 由两平面平行 推得线面平行 直线在两平行平面外 且与其中一平面平行 则这条直线与另一平面平行 数学第四讲直线 平面平行的判定及其性质 继续学习 考法示例1正方形ABCD与正方形ABEF所在平面相交于AB 在AE BD上各有一点P Q 且AP DQ 求证 PQ 平面BCE 思路分析思路一 构造平行四边形 线线平行 线面平行思路二 构造三角形 线线平行 线面平行 数学第四讲直线 平面平行的判定及其性质 解析 继续学习 图8 4 7 解法一如图8 4 7所示 作PM AB交BE于M 作QN AB交BC于N 连接MN 因为正方形ABCD和正方形ABEF有公共边AB 所以AE BD 又AP DQ 所以PE QB 又PM AB QN 所以所以所以PM与QN平行且相等 即四边形PMNQ为平行四边形 所以PQ MN 又MN 平面BCE PQ 平面BCE 所以PQ 平面BCE 数学第四讲直线 平面平行的判定及其性质 解析 继续学习 图8 4 8 解法二如图8 4 8 连接AQ并延长交BC的延长线于K 连接EK 因为AE BD AP DQ 所以PE BQ 所以又AD BK 所以所以所以PQ EK 又PQ 平面BCE EK 平面BCE 所以PQ 平面BCE 数学第四讲直线 平面平行的判定及其性质 继续学习 考法示例2四棱锥P ABCD的底面是边长为8的正方形 四条侧棱长均为2 点G E F H分别是棱PB AB CD PC上共面的四点 平面GEFH 平面ABCD BC 平面GEFH 1 证明 GH EF 2 若EB 2 求四边形GEFH的面积 数学第四讲直线 平面平行的判定及其性质 解析 继续学习 1 因为BC 平面GEFH BC 平面PBC 且平面PBC 平面GEFH GH 所以GH BC 同理可证EF BC 因此GH EF 数学第四讲直线 平面平行的判定及其性质 解析 继续学习 图8 4 10 2 如图8 4 10 连接AC BD交于点O BD交EF于点K 连接OP GK 因为PA PC O是AC的中点 所以PO AC 同理可得PO BD 又BD AC O 且AC BD都在底面内 所以PO 底面ABCD 又平面GEFH 平面ABCD 且PO 平面GEFH 所以PO 平面GEFH 因为平面PBD 平面GEFH GK 所以PO GK 且GK 底面ABCD 从而GK EF 数学第四讲直线 平面平行的判定及其性质 解析 继续学习 图8 4 10 所以GK是梯形GEFH的高 由AB 8 EB 2 得EB AB KB DB 1 4 从而KB1 2 1 2DB OB 即K为OB的中点 由PO GK 得GK PO 即G是PB的中点 且GH 1 2BC 4 由已知可得OB 4 所以GK 3 故四边形GEFH的面积S GK 3 18 考法2面面平行的判定与性质 继续学习 数学第四讲直线 平面平行的判定及其性质 考法指导1 证明平面与平面平行常用的方法 1 面面平行的定义 即证两个平面没有公共点 不常用 2 面面平行的判定定理 主要方法 3 利用垂直于同一条直线的两个平面平行 客观题可用 4 利用平面平行的传递性 两个平面同时平行于第三个平面 那么这两个平面平行 客观题可用 2 空间平行关系之间的转化 数学第四讲直线 平面平行的判定及其性质 继续学习 考法示例3如图8 4 12 在三棱柱ABC A1B1C1中 E F G H分别是AB AC A1B1 A1C1的中点 求证 1 B C H G四点共面 2 平面EFA1 平面BCHG 思路分析 思路一 公理4 线线平行 四点共面思路二 线线平行 线面平行 面面平行 图8 4 12 返回目录 数学第四讲直线 平面平行的判定及其性质 解析 1 因为GH是 A1B1C1的中位线 所以GH B1C1 又B1C1 BC 所以GH BC 所以B C H G四点共面 2 因为E F分别为AB AC的中点 所以EF BC 因为EF 平面BCHG BC 平面BCHG 所以EF 平面BCHG 因为A1G与EB平行且相等 所以四边形A1EBG是平行四边形 所以A1E GB 因为A1E 平面BCHG GB 平面BCHG 所以A1E 平面BCHG 因为A1E EF E 所以平面EFA1 平面BCHG 点评 要证四点共面 只需证GH BC即可 要证面面平行 可证一个平面内的两条相交直线和另一个平面平行 注意 线线平行 线面平行 面面平行 之间的相互转化 能力大提升 专题探究线面位置关系中的探索性问题 继续学习 数学第四讲直线 平面平行的判定及其性质 一 条件追溯型问题 示例4 如图8 4 13 已知在直四棱柱ABCD A1B1C1D1中 AD DC AB DC DC DD1 2AD 2AB 2 1 求证 DB 平面B1BCC1 2 设E是DC上一点 试确定E的位置 使得D1E 平面A1BD 并说明理由 图8 4 13 继续学习 数学第四讲直线 平面平行的判定及其性质 1 因为AB DC AD DC 所以AB AD 在Rt ABD中 AB AD 1 所以BD 易求BC 因为CD 2 所以BD BC 又BD BB1 B1B BC B 所以BD 平面B1BCC1 解析 继续学习 数学第四讲直线 平面平行的判定及其性质 2 DC的中点为E点 如图8 4 14 连接BE 因为DE AB DE AB 所以四边形ABED是平行四边形 所以AD BE 又AD A1D1 所以BE A1D1 所以四边形A1D1EB是平行四边形 所以D1E A1B 因为D1E 平面A1BD 所以D1E 平面A1BD 解析 图8 4 14 数学第四讲直线 平面平行的判定及其性质 方法探究 立体几何中的条件追溯型问题的基本特征是 针对一个结论 条件未知需探索 或条件增删需确定 或条件正误需判断 解题策略一般是先假设结论成立 然后以该结论作为一个已知条件 再结合题目的其他已知条件 逆推 即从后往前推 一步一步地推出所要求的条件 此类问题的难点是如何应用 执果索因 在 执果索因 的过程中 常常会犯的一个错误是不考虑推理过程的可逆与否 误将必要条件当作充分条件 应引起注意 继续学习 继续学习 数学第四讲直线 平面平行的判定及其性质 示例5 如图8 4 15 在四面体PABC中 PC AB PA BC 点D E F G分别是棱AP AC BC PB的中点 1 求证 DE 平面BCP 2 求证 四边形DEFG为矩形 3 是否存在点Q 到四面体PABC六条棱的中点的距离相等 说明理由 图8 4 15 二 存在探索型问题 思路分析 1 利用DE PC证明线面平行 2 利用平行关系和已知PC AB证明DE DG 3 Q为EG中点 线面位置关系中的探索性问题 继续学习 数学第四讲直线 平面平行的判定及其性质 1 因为D E分别是AP AC的中点 所以DE PC 又DE 平面BCP 所以DE 平面BCP 2 因为D E F G分别为AP AC BC PB的中点 所以DE PC FG DG AB EF 所以四边形DEFG为平行四边形 又PC AB 所以DE DG 所以四边形DEFG为矩形 解析 继续学习 数学第四讲直线 平面平行的判定及其性质 3 存在点Q满足条件 理由如下 连接DF EG 如图8 4 16所示 设Q为EG的中点 由 2 知 DF EG Q 且QD QE QF QG E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论