量表和常模.ppt_第1页
量表和常模.ppt_第2页
量表和常模.ppt_第3页
量表和常模.ppt_第4页
量表和常模.ppt_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章 量表和常模 本章目标 1 解释效度的含义及其重要性 2 指出根据测验标题错误地推断效度的情况 3 描述并解释内容效度 效标关联效度 预测效度和同时效度 构想效度的含义 第一节原始分数与导出分数 解释的一般原理 1 原始分数不具有解释意义2 原始分数必须转换为标准分 才具有解释意义 3 有两种测量分数的解释方式 常模参照解释和效标参照解释 一 原始分数 RawScore 实施测验之后 我们就依照测验说明书计算测验分数 这种分数称为原始分数 原始分数本身很少有意义 必须将原始分数与相当的个人分数比较 即与具有一定的参照点的个人分数比较 或与某个定义了的标准比较 或与某种准则变量比较 由此 需要把原分数量表转换某个测验量表才行 二 与原始分数等值的量表分数 为了使原始分数有意义 同时为了使不同的原始分数可以比较 必须把原始分数转换成具有一定参照点和单位的测验量表上的数值 这就是与原始分数等值的量表分数 有时也称它为导出分数 二 与原始分数等值的量表分数 测验量表制定的基本步骤是 1 根据测验的性质和使用的范围选取一个标准化样组 2 实施测验于标准化样组每一个成员 获得一组测验分数 3 将测验分数 原始分数 转换为某种测验量表 找出每个人的原始分数在这个量表上的相对位置 二 与原始分数等值的量表分数 常用的测验量表有 1 百分位表 2 标准分数量表 3 T量表 4 发展量表 年龄量表 年级量表 6 商数 比率智商 离差智商 第二节常模和标准化样组 一 标准化样组1 含义 用来代表总体的样组 2 条件 1 标淮化样组的成员必须给予确切的定义 标准化样组的成员应该都是具有某一研究特征的个体 在一个全域里 各个小的团体在一个测验上的作业常有差异 假如这些团体的作业表现出不同水平和范围时 则应对每个团体分别建立常模 2 标准化样组的条件 1 标淮化样组的成员必须给予确切的定义 经常与测验作业发生关联的变量而且可以作为区分标准化样组的变量是 性别 年龄 放育 社会经济地位 智力 地理区域 种族等 2 标准化样组的条件 2 标准化样组必须是欲测量的全域的一个代表性样组 用分层取样的办法 以保证常模样组中各类被试都有他们合乎比例的代表 2 标准化样组的条件 3 取样的过程必须有详细的描述说明样组代表全体的程度 WISC R 手册 花费了五页来交待取样的过程 取样的技术 样组的规模 取样的时间 与测验发生联系的变量 性别 年龄 种族 地理 区域 家长职业 城市与乡村 以及其他 2 标准化样组的条件 4 标准化样组的规模要有适当的大小在人力 物力 时间允许的条件下 样组的规模愈大愈好 这是因为取样的误差的大小与样组的规模成反比 一个规模较小而取样代表性好的样组 通常比规模较大而取样代表性差的样组要好得多 2 标准化样组的条件 5 标准化样组是一定时空的产物我们在一定的时间和空间中抽取的标准化样组 它只能反映当时当地的情况 二 选择常模样本 1 常模样本的构成 1 内涵 常模样本通常是具有某种共同特征的人所组成的一个群体 或是该群体的一个样本 2 确定常模样本的过程 确定一般总体 确定目标总体 确定常模 2 常模样本的条件 1 常模样本的构成必须明确 2 常模样本必须是所测群体的代表性样本 3 样本大小要适当 总体规模 总体性质 施测结果 4 注意常模的时效性 3 取样的方法 1 简单随机抽样按照随机顺序表选择被试作为样本 或者是将抽样范围中的每个人或者每个抽样单位编号 随机选择 以避免由于标记 姓名或者其他社会赞许性偏见造成抽样误差 2 系统抽样 系统抽样的具体方法是 假设总体数目为N 若要选择K分之一的被试作为样本 则可以把所有的人N分为N K组 每个组选一个人 则刚好组成1 K的样本 或者把所有的人从1到N按序编号 把所有编号是K的倍数的人抽取出来 即可组成所需样本 3 分组抽样 在总体数目较大 无法编号 并且总体成员又具有多样性的情况下 可以先将群体分为一定的小组 再从小组内随机抽样 保证抽样可靠性的关键是选定和划分小组 4 分层抽样 概念 先将总体中的所有单位按某种特征或标志划分成若干类型或层次 然后再在各个类型或层次中采用简单随机抽样或系统抽样的办法抽取一个子样本 最后将这些子样本合起来构成总体的样本 4 分层抽样 2 优点 1 在不增加样本规模的前提下 降低抽样误差 提高抽样精度 通过把异质性较强的总体分成一个个同质性较强的子总体 从而提高抽样的效率 2 便于了解总体内不同层次的情况 以及对总体中的不同层次进行单独研究或比较 4 分层抽样 分层标准 以所分析和研究的主要变量或相关变量为标准 比如 了解不同职业的人对物价改革的看法 就可以以人们的职业作为分层标准 分层标准 以保证各层内部同质性强 突出总体内在结构的变量作为标准 比如 按工作性质把职工分为 干部 工人 技术人员 勤杂人员等 分层标准 以那些已有明显层次区分的变量为标准 比如 按性别 年龄 文化程度 职业等分层 学生按年级 专业 学校类型等分层 城市按人口规模分层 4 分层抽样 分层的比例 按比例分层按各种类型或层次中的单位数目同总体数目间的比例来抽取样本 比如 对于某工厂工人按性别比例抽样 4 分层抽样 分层的比例 不按比例分层适用对象 A 总体中有的类型或层次的单位太少时 B 仅用于对不同层次的子总体进行专门研究或比较 而不用样本资料来推断总体的时候 5 整群抽样 概念 从总体中随机抽取一些小的群体 然后由所抽出来的若干个小群体内的所有元素构成的样本 举例 某中学有3000名学生 共有100个班级 每班有30名学生 请用整群抽样的方法抽取300名学生的样本 5 整群抽样 2 特点 1 简便易行 节省费用 例如 在一个有10万户家庭的城市中抽取1000户家庭的样本 该城市有200个居委会 每个居委会约有500户家庭 2 样本分布面不广 样本对总体的代表性相对较差 整群抽样与分层抽样的区别 适用对象不同 当某个总体是由若干个有着自然界线和区分的子群 或类别 层次 所组成 不同子群相互间差别很大 而每个子群内部差别不大时 适合于分层抽样的方法 当不同子群相互之间差别不大 而每个子群内部的异质性程度比较大时 适合于采用整群抽样的方法 第三节常模的类型及解释 一 百分位常模百分位常模包括 百分等级四分位数十分位数 1 百分等级 含义 它是指把一个总体的所有分数按大小顺序排列后 把所有分数按个数等分为100等份 这每一个等份对应的百分数就是这个分数分布的百分等级 而刚好把所有分数个数分为100份的分数值则叫百分位数 换句话说 百分等级是以百分率的形式来表示一个人的相对等级 即我们将常模样本分成100等份时这个人所占的等级 百分等级的计算 百分等级的计算关键在于确定在常模样本中分数低于某一特别分数的人数比例 这可以分两种情况 一种情况是对没有分组资料的数据分布求百分等级 公式为 PR 100 100 R 0 5 N 其中 R为排名顺序 N为总人数 百分等级的计算 另一种情况是对有分组资料的数据求百分等级 对这类资料中任一个分数计算百分等级的公式如下 PR 100 N x l fp h Cf 其中 x为任意原始分数 l为该原始分数所在组的精确下限 fp为该分数所在组的次数 Cf为l以下的累积次数 h为组距 2 百分点或百分位数 含义 在分数量表上 相对于某一百分等级的分数点就叫百分点或百分位数 计算方法 内插法 百分等级常模 由原始分数计算百分等级 由百分等级确定原始分数 通过这样的双向方式编制的原始分数与百分等级对照表 3 四分位数和十分位数 四分法将数据分布分成四等份 实际上是第25 50 75等百分点分段 因而计算四分位与计算第25 50 75的百分点相同 十分位的计算与计算第10 20 90等百分点相同 最低的1 4 第1到25的百分等级 为第一个四分位 最低的1 10则为第一个十分位 依次类推 二 标准分数常模 1 线性转换的标准分数 z分数 zscore 最典型的线性转换的标准分数 它是指以标准差为单位所表示的原始分数与平均数的差距 z X M SD 其中 X为原始分数 M为平均数 SD为标准差 Z量表分数 由于z分数中会出现小数点和负值 而且单位过大 所以通常又将z分数转换成Z量表分数 转换方法是 Z A十Bz 6 8 Z为转换后的标准分数 A B为常数 由于加上或乘以一个常数并不改变量表中的比较关系 所以Z分数与z分数是同质的 例如 IQ分数实质上就是一种Z分数 其平均分为100 标准差为10 IQ 100十10z 2 正态化的标准分数 基本思想 按照正态分布曲线规律 来进行等级评价 正态化过程 主要是先将原始分数转化为百分等级 再将百分等级转化为正态分布上相应的离均值 并可以表示为任何平均数和标准差 正态化转换的计算步骤 1 对原始分数按序由小到大排列 计算各分数占总样本量的累积百分比 2 在正态曲线面积表中 求相对于该百分比的z分数 3 可以再次将分数转换成T分数量表 即以50为平均数 10为标准差 T 50十l0z 4 假如原始分布呈正态 正态化的标准分数与由线性转换所得的标准差分数有相同的值 假如分布不呈正态 这两种分数的值则不同 标准九 标准九是另一较知名的标准分数系统 其量表是一个9级的分数量表 它以5为平均数 以2为标准差 标准九即标准化九分制的简称 它广泛用于美国空军和某些教学情境中的分级 标准九将原始分数依据百分等级区分成9个等级 最高分为9分 最高的4 其次8分 7 最低分为1分 最低的4 5分 20 位于分布的中心 除1分和9分外 其余每个分数均包括半个标准差的范围 其他常态化标准分数 标准十分 卡特尔的16人格因素中使用 平均数为5 标准差为1 5 标准二十分 平均数为10 标准差为3 三 常模的表示方法 1 转化表它由原始分数表 相对应的导出分数表和对常模样本的具体描述等三个要素组成 测验的使用者利用转化表可以将原始分数转换为导出分数 或者是针对给出的导出分数找出相应的原始分数 据转化表进行解释时 必须注意 常模转化表总是特异性的 即一个转化表总是来自特定的常模样本的 因此只能适用于相同群体的成员的比较 2 剖析图 剖析图是测验分数的转换关系用图形表示出来的一种模式图 从剖析图上可以很直观地看出被试在测验以及测验的各个子测验或维度上的分数及其相对的位置 使用剖析图作解释 要求各个分测验所使用的常模样本必须相同 否则各分测验分数之间无法比较 四 效标参照解释 1 含义 将应试者成绩与外在效标进行比较来做出评价的解释 2 作用 评判应试者是否达到了某种标准或效标 3 类型 1 内容参照分数内容参照分数的测量目的是确定应试者对某个确定材料内容或技能的掌握和熟悉程度的分数 举例 成就测验编制内容参照测验量表的关键是预先制定一个判断应试者是否已掌握某种内容或技能的熟练程度的标准 这种标准可以通过掌握分数和正确百分数来表示 1 内容参照分数解释 掌握分数最简单的掌握分数的标准是定一个判别应试者是否通过或掌握的最低分数 在此分数之上 表明应试者对考核的内容已经掌握 反之 说明应试者没有达到应该掌握的水平 通常以80 一90 的人能通过的分数作为最低分数 正确百分数正确百分数表明被试在测验中答对题目的比例 计算公式如下 正确百分数 答对题目数 总题目数x100 2 结果参照分数的解释 结果参照分数是将效标材料直接结合到测验结果的解释过程而进行评价的分数 例 预测性测验结果参照分数可以表示获得某个分数的应试者达到某种效标水平的可能性 进行结果参照分数解释的常用表示方法是期望表 期望表说明了一个给定的原始分数或分数等级获得不同效标分数或等级的可能性有多大 这种可能性用人数百分比来表示 见表6 1 第四节发展性常模和发展量表 一 年龄量表 一 智力年龄1 定义 智力年龄 代表智力水平的年龄 即儿童在年龄量表上所得的分数 2 特点 智龄单位不保持恒定 一般随年龄而减小 一 智力年龄 3 计算期坦福一比纳量表 上自5岁组下至14岁组 每组有6个测题 答对每个测题得智龄两个月 二 智商 1 比率智商 1 公式 2 问题 高年龄组儿童的智商 其实际年龄无法确定 智力生长是曲线 智龄不是等距单位 求高年龄组智商就需要对实际年龄加以修订 如果各年龄组的标准差编制的不相等 则一个儿童在各年龄所得的智商不相同 这样智商在不同年龄组的意义就不同了 2 离差智商 1 提出者 美国心理学家韦克斯勒 2 基本原理 把每个年龄阶段儿童的智力分布看作是常态分布 某个儿童的智力高低 视其与同年龄伙伴智力分布的均数的离差大小而定 2 离差智商 3 计算第一次转化 第二次转化 二 年级当量 1 含义 以各年级学生在某份测验上的平均原始分数 作为判断学生学习水平的一个指标 比如 四年级学生中解答问题的平均数为23 则原始分数23相当于4年级的年级当量 4 5就相当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论