




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10.1概率考纲解读考点内容解读要求高考示例常考题型预测热度1.古典概型及事件概率理解古典概型及其概率计算公式;会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2017山东,16;2017天津,3;2017课标全国,11;2016课标全国,18;2016课标全国,3;2016课标全国,5选择题、填空题、解答题2.几何概型及概率综合问题了解几何概型的意义,会解与几何概型相交会的线性规划、圆及其他图形的概率2017课标全国,4;2017江苏,7;2016课标全国,8分析解读本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.五年高考考点一古典概型及事件概率1.(2017课标全国,11,5分)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A.110B.15C.310D.25答案D2.(2017天津,3,5分)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A.45B.35C.25D.15答案C3.(2016课标全国,5,5分)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.815B.18C.115D.130答案C4.(2016北京,6,5分)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.925答案B5.(2016天津,2,5分)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56B.25C.16D.13答案A6.(2015课标,4,5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.310B.15C.110D.120答案C7.(2016四川,13,5分)从2,3,8,9中任取两个不同的数字,分别记为a,b,则logab为整数的概率是.答案168.(2014课标,13,5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.答案239.(2014课标,13,5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.答案1310.(2017山东,16,12分)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.解析(1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,B1,B2,B1,B3,B2,B3,共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:A1,A2,A1,A3,A2,A3,共3个,则所求事件的概率为P=315=15.(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,共9个.包括A1但不包括B1的事件所包含的基本事件有:A1,B2,A1,B3,共2个,则所求事件的概率为P=29.11.(2016课标全国,18,12分)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010 (1)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解析(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(3分)(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(6分)(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05(10分)调查的200名续保人的平均保费为0.85a0.30+a0.25+1.25a0.15+1.5a0.15+1.75a0.10+2a0.05=1.192 5a元.因此,续保人本年度平均保费的估计值为1.192 5a元.(12分)12.(2015天津,15,13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.解析(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)(i)从6名运动员中随机抽取2人参加双打比赛的所有可能结果为A1,A2,A1,A3,A1,A4,A1,A5,A1,A6,A2,A3,A2,A4,A2,A5,A2,A6,A3,A4,A3,A5,A3,A6,A4,A5,A4,A6,A5,A6,共15种.(ii)编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为A1,A5,A1,A6,A2,A5,A2,A6,A3,A5,A3,A6,A4,A5,A4,A6,A5,A6,共9种.因此,事件A发生的概率P(A)=915=35.教师用书专用(1332)13.(2015广东,7,5分)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8D.1答案B14.(2014江西,3,5分)掷两颗均匀的骰子,则点数之和为5的概率等于()A.118B.19C.16D.112答案B15.(2014陕西,6,5分)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15B.25C.35D.45答案B16.(2014湖北,5,5分)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1p2p3B.p2p1p3C.p1p3p2D.p3p1p2答案C17.(2013课标全国,3,5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.16答案B18.(2013江西,4,5分)集合A=2,3,B=1,2,3,从A,B中各任意取一个数,则这两数之和等于4的概率是()A.23B.12C.13D.16答案C19.(2014广东,12,5分)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为.答案2520.(2013浙江,12,4分)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于.答案1521.(2013课标全国,13,5分)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.答案0.222.(2016山东,16,12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:若xy3,则奖励玩具一个;若xy8,则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解析用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间与点集S=(x,y)|xN,yN,1x4,1y4一一对应.因为S中元素的个数是44=16,所以基本事件总数为16.(1)记“xy3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy8”为事件B,“3xy516,所以小亮获得水杯的概率大于获得饮料的概率.23.(2015山东,16,12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.解析(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P=1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,A4,B1,A4,B2,A4,B3,A5,B1,A5,B2,A5,B3,共15个.根据题意,这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有:A1,B2,A1,B3,共2个.因此A1被选中且B1未被选中的概率为P=215.24.(2015北京,17,13分)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“”表示购买,“”表示未购买.商品顾客人数甲乙丙丁1002172003008598(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?解析(1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得:顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.25.(2014陕西,19,12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:赔付金额(元)01 0002 0003 0004 000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解析(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,知样本车辆中车主为新司机的有0.11 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.26.(2014四川,16,12分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.解析(1)由题意知,(a,b,c)所有可能的结果为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89.27.(2014天津,15,13分)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:一年级二年级三年级男同学ABC女同学XYZ现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.解析(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为A,B,A,C,A,X,A,Y,A,Z,B,C,B,X,B,Y,B,Z,C,X,C,Y,C,Z,X,Y,X,Z,Y,Z,共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为A,Y,A,Z,B,X,B,Z,C,X,C,Y,共6种.因此,事件M发生的概率P(M)=615=25.28.(2013天津,15,13分)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)产品编号A6A7A8A9A10质量指标(x,y,z)(1,2,2)(2,1,1)(2,2,1)(1,1,1)(2,1,2)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.解析(1)计算10件产品的综合指标S,如下表:产品编号A1A2A3A4A5A6A7A8A9A10S4463454535其中S4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)(i)在该样本的一等品中,随机抽取2件产品的所有可能结果为A1,A2,A1,A4,A1,A5,A1,A7,A1,A9,A2,A4,A2,A5,A2,A7,A2,A9,A4,A5,A4,A7,A4,A9,A5,A7,A5,A9,A7,A9,共15种.(ii)在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为A1,A2,A1,A5,A1,A7,A2,A5,A2,A7,A5,A7,共6种.所以P(B)=615=25.29.(2013江西,18,12分)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X0就去打球,若X=0就去唱歌,若X0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.解析(1)X的所有可能取值为-2,-1,0,1.(2)数量积为-2的有,共1种;数量积为-1的有,共6种;数量积为0的有,共4种;数量积为1的有,共4种.故所有可能的情况有15种.所以小波去下棋的概率为P1=715;因为去唱歌的概率为P2=415,所以小波不去唱歌的概率P=1-P2=1-415=1115.30.(2013山东,17,12分)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:ABCDE身高1.691.731.751.791.82体重指标19.225.118.523.320.9 (1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率;(2)从该小组同学中任选2个,求选到的2人的身高都在1.70以上且体重指标都在18.5,23.9)中的概率.解析(1)从身高低于1.80米的同学中任选2人,其一切可能的结果组成的基本事件有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78米以下的事件有(A,B),(A,C),(B,C),共3个.因此选到的2人身高都在1.78米以下的概率为P=36=12.(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.70米以上且体重指标都在18.5,23.9)中的事件有(C,D),(C,E),(D,E),共3个.因此选到的2人的身高都在1.70米以上且体重指标都在18.5,23.9)中的概率为P1=310.31.(2013辽宁,19,12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解析 (1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,共15个,而且这些基本事件的出现是等可能的.用A表示“都是甲类题”这一事件,则A包含的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6个,所以P(A)=615=25.(6分)(2)基本事件同(1),用B表示“不是同一类题”这一事件,则B包含的基本事件有1,5,1,6,2,5,2,6,3,5,3,6,4,5,4,6,共8个,所以P(B)=815.(12分)32.(2013湖南,18,12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;Y51484542频数4 (2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.解析(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:Y51484542频数2463所种作物的平均年收获量为51脳2+48脳4+45脳6+42脳315=102+192+270+12615=69015=46.(2)由(1)知,P(Y=51)=215,P(Y=48)=415.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y48)=P(Y=51)+P(Y=48)=215+415=25.考点二几何概型及概率综合问题1.(2017课标全国,4,5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.C.12D.答案B2.(2016课标全国,8,5分)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.710B.58C.38D.310答案B3.(2015福建,8,5分)如图,矩形ABCD中,点A在x轴上,点B的坐标为(1,0),且点C与点D在函数f(x)=的图象上.若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12答案B4.(2017江苏,7,5分)记函数f(x)=6+x-x2的定义域为D.在区间-4,5上随机取一个数x,则xD的概率是.答案595.(2014重庆,15,5分)某校早上8:00开始上课,假设该校学生小张与小王在早上7:307:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为.(用数字作答)答案932教师用书专用(69)6.(2014辽宁,6,5分)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.B.C.D.答案B7.(2014福建,13,4分)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.答案0.188.(2013福建,14,5分)利用计算机产生01之间的均匀随机数a,则事件“3a-1a的概率是()A.45B.35C.25D.15答案D4.(2017河南新乡调研,10)某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本平均数的工人为优秀工人,从该车间的6名工人中任取2名,则恰有1名优秀工人的概率为()A.19B.13C.815D.715答案C考点二几何概型及概率综合问题5.(2018山东师大附中12月模拟,9)在区间上随机取一个数x,则sin x+cos x1,2的概率是()A.23B.34C.12D.13答案B6.(2018广东惠州一调,8)三国时代吴国数学家赵爽所注周髀算经中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2勾股+(股-勾)2=4朱实+黄实=弦实,化简得勾2+股2=弦2.设勾股形中勾股比为13,若向弦图内随机抛掷1 000颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为(31.732)()A.866B.500C.300D.134答案D7.(2017陕西榆林二模,4)已知函数f(x)=在区间0,e上随机取一个实数x,则f(x)的值不小于常数e的概率是()A.1eB.1-1eC.e1+eD.11+e答案B8.(2017江西赣中南五校第一次联考,4)如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,a2为半径的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是()A.1-B.C.1-D.与a的取值有关答案A9.(2017山西大学附中第二次模拟,10)已知等差数列an的前n项和为Sn,且a1=-20,在区间(3,5)内任取一个实数作为数列an的公差,则Sn的最小值仅为S6的概率为()A.15B.16C.314D.13答案DB组20162018年模拟提升题组(满分:55分时间:45分钟)一、选择题(共5分)1.(2017江西一模,3)向面积为S的平行四边形ABCD中任投一点M,则MCD的面积小于S3的概率为()A.13B.35C.23D.34答案C二、填空题(共5分)2.(2017北师大附中期中,14)已知菱形ABCD的边长为4,ABC=150,若在菱形内任取一点,则该点到菱形的四个顶点的距离均不小于1的概率为.答案1-三、解答题(每小题15分,共45分)3.(2018福建厦门调研,18)某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下表:消费次数第1次第2次第3次第4次5次及以上收费比例10.950.900.850.80该公司从注册的会员中随机抽取了100位进行统计,得到统计数据如下表:消费次数第1次第2次第3次第4次5次及以上频数60201055假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率.解析(1)100位会员中,至少消费两次的会员有40位,所以估计一位会员至少消费两次的概率为40100=0.4.(2)该会员第1次消费时,公司获得的利润为200-150=50(元),第2次消费时,公司获得的利润为2000.95-150=40(元),所以,公司获得的平均利润为50+402=45(元).(3)因为201055=4211,所以用分层抽样方法抽出的8人中,消费2次的有4人,分别设为A1,A2,A3,A4,消费3次的有2人,分别设为B1,B2,消费4次和5次及以上的各有1人,分别设为C,D,从中抽出2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内蒙古大学创业学院《建筑电气消防系统》2023-2024学年第二学期期末试卷
- 三亚航空旅游职业学院《系统与技术》2023-2024学年第二学期期末试卷
- 重庆电讯职业学院《现代仪器分析测试技术》2023-2024学年第二学期期末试卷
- 湖北汽车工业学院科技学院《音乐教学法》2023-2024学年第二学期期末试卷
- 广西工商职业技术学院《图形图像软件》2023-2024学年第二学期期末试卷
- 北京交通运输职业学院《临床血液学检验技术》2023-2024学年第二学期期末试卷
- 山东石油化工学院《计算机辅助实验》2023-2024学年第二学期期末试卷
- 甘肃林业职业技术学院《商业智能数据分析》2023-2024学年第二学期期末试卷
- 贵州轻工职业技术学院《建筑信息建模(BM)技术应用》2023-2024学年第二学期期末试卷
- 伊春职业学院《机械数字化辅助工程》2023-2024学年第二学期期末试卷
- JGJ196-2010建筑施工塔式起重机安装、使用、拆卸安全技术规程
- 教师专业发展第2章 理想教师的专业形象
- 监狱餐厅承包协议
- 100以内两位数进位加法退位减法计算题-(直接打印版)
- (正式版)SH∕T 3541-2024 石油化工泵组施工及验收规范
- 数字孪生+智慧楼宇解决方案-
- 大学生家族史范文3000字
- -辽宁省沈阳市大东区2023-2024学年七年级下学期期末数学试卷
- DZ∕T 0173-2022 大地电磁测深法技术规程(正式版)
- 小古文100篇074-《鹿照水》
- 2023年云南烟草专卖局招聘考试真题及答案
评论
0/150
提交评论