




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NeuralNetworksforMachineLearningLecture13aTheupsanddownsofbackpropagation Abriefhistoryofbackpropagation Thebackpropagationalgorithmforlearningmultiplelayersoffeatureswasinventedseveraltimesinthe70 sand80 s Bryson Ho 1969 linearWerbos 1974 Rumelhartet al in1981Parker 1985 LeCun 1985 Rumelhartet al 1985 Backpropagationclearlyhadgreatpromiseforlearningmultiplelayersofnon linearfeaturedetectors Butbythelate1990 smostseriousresearchersinmachinelearninghadgivenuponit Itwasstillwidelyusedinpsychologicalmodelsandinpracticalapplicationssuchascreditcardfrauddetection Whybackpropagationfailed Thepopularexplanationofwhybackpropagationfailedinthe90 s Itcouldnotmakegooduseofmultiplehiddenlayers exceptinconvolutionalnets Itdidnotworkwellinrecurrentnetworksordeepauto encoders SupportVectorMachinesworkedbetter requiredlessexpertise producedrepeatableresults andhadmuchfanciertheory Therealreasonsitfailed Computerswerethousandsoftimestooslow Labeleddatasetswerehundredsoftimestoosmall Deepnetworksweretoosmallandnotinitializedsensibly Theseissuespreventeditfrombeingsuccessfulfortaskswhereitwouldeventuallybeabigwin Aspectrumofmachinelearningtasks Low dimensionaldata e g lessthan100dimensions Lotsofnoiseinthedata Notmuchstructureinthedata Thestructurecanbecapturedbyafairlysimplemodel Themainproblemisseparatingtruestructurefromnoise Notidealfornon Bayesianneuralnets TrySVMorGP High dimensionaldata e g morethan100dimensions Thenoiseisnotthemainproblem Thereisahugeamountofstructureinthedata butitstoocomplicatedtoberepresentedbyasimplemodel Themainproblemisfiguringoutawaytorepresentthecomplicatedstructuresothatitcanbelearned Letbackpropagationfigureitout TypicalStatistics ArtificialIntelligence WhySupportVectorMachineswereneveragoodbetforArtificialIntelligencetasksthatneedgoodrepresentations View1 SVM sarejustacleverreincarnationofPerceptrons Theyexpandtheinputtoa verylarge layerofnon linearnon adaptivefeatures Theyonlyhaveonelayerofadaptiveweights Theyhaveaveryefficientwayoffittingtheweightsthatcontrolsoverfitting View2 SVM sarejustacleverreincarnationofPerceptrons Theyuseeachinputvectorinthetrainingsettodefineanon adaptive pheature Theglobalmatchbetweenatestinputandthattraininginput Theyhaveacleverwayofsimultaneouslydoingfeatureselectionandfindingweightsontheremainingfeatures HistoricaldocumentfromAT TAdaptiveSystemsResearchDept BellLabs NeuralNetworksforMachineLearningLecture13bBeliefNets Whatiswrongwithback propagation Itrequireslabeledtrainingdata Almostalldataisunlabeled ThelearningtimedoesnotscalewellItisveryslowinnetworkswithmultiplehiddenlayers Why Itcangetstuckinpoorlocaloptima Theseareoftenquitegood butfordeepnetstheyarefarfromoptimal Shouldweretreattomodelsthatallowconvexoptimization Overcomingthelimitationsofback propagationbyusingunsupervisedlearning Keeptheefficiencyandsimplicityofusingagradientmethodforadjustingtheweights butuseitformodelingthestructureofthesensoryinput Adjusttheweightstomaximizetheprobabilitythatagenerativemodelwouldhavegeneratedthesensoryinput Ifyouwanttodocomputervision firstlearncomputergraphics Thelearningobjectiveforagenerativemodel Maximisep x notp y x Whatkindofgenerativemodelshouldwelearn Anenergy basedmodellikeaBoltzmannmachine Acausalmodelmadeofidealizedneurons Ahybridofthetwo ArtificialIntelligenceandProbability ManyancientGreekssupportedSocratesopinionthatdeep inexplicablethoughtscamefromthegods Today sequivalenttothosegodsistheerratic evenprobabilisticneuron Itismorelikelythatincreasedrandomnessofneuralbehavioristheproblemoftheepilepticandthedrunk nottheadvantageofthebrilliant P H Winston ArtificialIntelligence 1977 ThefirstAItextbook Allofthiswillleadtotheoriesofcomputationwhicharemuchlessrigidlyofanall or nonenaturethanpastandpresentformallogic Therearenumerousindicationstomakeusbelievethatthisnewsystemofformallogicwillmoveclosertoanotherdisciplinewhichhasbeenlittlelinkedinthepastwithlogic ThisisthermodynamicsprimarilyintheformitwasreceivedfromBoltzmann JohnvonNeumann TheComputerandtheBrain 1958 unfinishedmanuscript Themarriageofgraphtheoryandprobabilitytheory Inthe1980 stherewasalotofworkinAIthatusedbagsofrulesfortaskssuchasmedicaldiagnosisandexplorationforminerals Forpracticalproblems theyhadtodealwithuncertainty Theymadeupwaysofdoingthisthatdidnotinvolveprobabilities Graphicalmodels Pearl Heckerman Lauritzen andmanyothersshowedthatprobabilitiesworkedbetter Graphsweregoodforrepresentingwhatdependedonwhat Probabilitiesthenhadtobecomputedfornodesofthegraph giventhestatesofothernodes BeliefNets Forsparselyconnected directedacyclicgraphs cleverinferencealgorithmswerediscovered BeliefNets Abeliefnetisadirectedacyclicgraphcomposedofstochasticvariables Wegettoobservesomeofthevariablesandwewouldliketosolvetwoproblems Theinferenceproblem Inferthestatesoftheunobservedvariables Thelearningproblem Adjusttheinteractionsbetweenvariablestomakethenetworkmorelikelytogeneratethetrainingdata stochastichiddencauses visibleeffects GraphicalModelsversusNeuralNetworks Earlygraphicalmodelsusedexpertstodefinethegraphstructureandtheconditionalprobabilities Thegraphsweresparselyconnected Researchersinitiallyfocusedondoingcorrectinference notonlearning Forneuralnets learningwascentral Hand wiringtheknowledgewasnotcool OK maybealittlebit Knowledgecamefromlearningthetrainingdata Neuralnetworksdidnotaimforinterpretabilityorsparseconnectivitytomakeinferenceeasy Nevertheless thereareneuralnetworkversionsofbeliefnets Twotypesofgenerativeneuralnetworkcomposedofstochasticbinaryneurons Energy based WeconnectbinarystochasticneuronsusingsymmetricconnectionstogetaBoltzmannMachine Ifwerestricttheconnectivityinaspecialway itiseasytolearnaBoltzmannmachine Butthenweonlyhaveonehiddenlayer Causal WeconnectbinarystochasticneuronsinadirectedacyclicgraphtogetaSigmoidBeliefNet Neal1992 stochastichiddencauses visibleeffects NeuralNetworksforMachineLearningLecture13cLearningSigmoidBeliefNets LearningSigmoidBeliefNets Itiseasytogenerateanunbiasedexampleattheleafnodes sowecanseewhatkindsofdatathenetworkbelievesin Itishardtoinfertheposteriordistributionoverallpossibleconfigurationsofhiddencauses Itishardtoevengetasamplefromtheposterior Sohowcanwelearnsigmoidbeliefnetsthathavemillionsofparameters stochastichiddencauses visibleeffects Thelearningruleforsigmoidbeliefnets Learningiseasyifwecangetanunbiasedsamplefromtheposteriordistributionoverhiddenstatesgiventheobserveddata Foreachunit maximizethelogprob thatitsbinarystateinthesamplefromtheposteriorwouldbegeneratedbythesampledbinarystatesofitsparents j i Eveniftwohiddencausesareindependentintheprior theycanbecomedependentwhenweobserveaneffectthattheycanbothinfluence Ifwelearnthattherewasanearthquakeitreducestheprobabilitythatthehousejumpedbecauseofatruck truckhitshouse earthquake housejumps 20 20 20 10 p 1 1 0001p 1 0 4999p 0 1 4999p 0 0 0001 posterioroverhiddens Explainingaway JudeaPearl 10 Whyit shardtolearnsigmoidbeliefnetsonelayeratatime TolearnW weneedtosamplefromtheposteriordistributioninthefirsthiddenlayer Problem1 Theposteriorisnotfactorialbecauseof explainingaway Problem2 Theposteriordependsontheprioraswellasthelikelihood SotolearnW weneedtoknowtheweightsinhigherlayers evenifweareonlyapproximatingtheposterior Alltheweightsinteract Problem3 Weneedtointegrateoverallpossibleconfigurationsinthehigherlayerstogetthepriorforfirsthiddenlayer Itshopeless data hiddenvariables hiddenvariables hiddenvariables W prior Somemethodsforlearningdeepbeliefnets MonteCarlomethodscanbeusedtosamplefromtheposterior Neal1992 Butitspainfullyslowforlarge deepbeliefnets Inthe1990 speopledevelopedvariationalmethodsforlearningdeepbeliefnets Theseonlygetapproximatesamplesfromtheposterior Learningwithsamplesfromthewrongdistribution Maximumlikelihoodlearningrequiresunbiasedsamplesfromtheposterior Whathappensifwesamplefromthewrongdistributionbutstillusethemaximumlikelihoodlearningrule Doesthelearningstillworkordoesitdocrazythings NeuralNetworksforMachineLearningLecture13dThewake sleepalgorithm Anapparentlycrazyidea It shardtolearncomplicatedmodelslikeSigmoidBeliefNets Theproblemisthatit shardtoinfertheposteriordistributionoverhiddenconfigurationswhengivenadatavector Itshardeventogetasamplefromtheposterior Crazyidea dotheinferencewrong Maybelearningwillstillwork ThisturnsouttobetrueforSBNs Ateachhiddenlayer weassume wrongly thattheposterioroverhiddenconfigurationsfactorizesintoaproductofdistributionsforeachseparatehiddenunit Factorialdistributions Inafactorialdistribution theprobabilityofawholevectorisjusttheproductoftheprobabilitiesofitsindividualterms AgeneraldistributionoverbinaryvectorsoflengthNhas2 Ndegreesoffreedom actually2 N 1becausetheprobabilitiesmustaddto1 AfactorialdistributiononlyhasNdegreesoffreedom individualprobabilitiesofthreehiddenunitsinalayerprobabilitythatthehiddenunitshavestate1 0 1ifthedistributionisfactorial Thewake sleepalgorithm Hintonet al 1995 Wakephase Userecognitionweightstoperformabottom uppass Trainthegenerativeweightstoreconstructactivitiesineachlayerfromthelayerabove Sleepphase Usegenerativeweightstogeneratesamplesfromthemodel Traintherecognitionwe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球低空经济产业链分析及2025年中国市场趋势报告
- 2025年新能源汽车自动驾驶技术专利布局与保险产品创新趋势报告
- 2025年新能源汽车高压系统电气安全防护技术市场风险与应对策略报告
- Unit1 You and Me SectionA 2a-2e 说课稿2024-2025学年人教版英语七年级上册
- 2.1我们周围的空气评课教学设计- 九年级化学人教版上册
- 综合复习与测试说课稿-2025-2026学年初中生物学北师大版八年级下册-北师大版
- 8.2(1)用配方法解一元二次方程说课稿2023-2024学年鲁教版(五四制)数学八年级下册
- (遵义专版)2024年秋九年级化学上册 第4章 认识化学变化 第2节 化学反应中的质量关系说课稿 沪教版
- 肌肉放松喷雾行业跨境出海项目商业计划书
- 2025-2030合成生物学底层技术突破与生物制造产业化路径分析报告
- DB32T 4494-2023 房屋白蚁灭治技术规程
- 10千伏线路故障巡视培训
- 三年级语文上册 《阅读理解》专项练习题 (含答案)(5)(部编版)
- 12S4消防工程标准图集
- GB/T 18233.4-2024信息技术用户建筑群通用布缆第4部分:住宅
- DB12T 496-2013 保安从业单位信用资质等级评估规范
- 江姐-绣红旗-红梅赞
- JTT 854-2013 公路桥梁球型支座规格系列
- 30道计量员岗位常见面试问题含HR问题考察点及参考回答
- 《狗之歌》课件(湖北省县级优课)
- DB21-T 2951-2018秸秆热解制备生物炭技术规程
评论
0/150
提交评论