探究三角形全等的判定“边边边”.doc_第1页
探究三角形全等的判定“边边边”.doc_第2页
探究三角形全等的判定“边边边”.doc_第3页
探究三角形全等的判定“边边边”.doc_第4页
探究三角形全等的判定“边边边”.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

探索三角形全等的条件边边边教学设计 课程名称探索三角形全等的条件边边边教学目标一、知识技能:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,掌握三角形全等的“边边边”条件,了解三角形的稳定性,在探索的过程中,能够进行有条理的思考并进行简单的推理。二、过程与方法:讨论、引导教学法。三、情感态度价值观:使学生在自主探索三角形全等的过程中,经历画图、观察、比较、推理、交流等环节,从而获得正确的学习方式和良好的情感体验,让学生体验数学源于生活,服务于生活的辨证思想。教学重点经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;教学难点能够利用三角形全等的“边边边”条件进行有条理的思考并进行简单的推理。学习目标1、 通过三角形、四边形的教具演示,知道三角形具有稳定性,而其它的多边形不具有稳定性,能借助三角形的稳定性解释生活中的某些现象;2、 通过画图、观察、比较,与同伴交流、讨论、倾听,归纳总结出:三边对应相等的两个三角形全等;3、通过标杆题的学习,能够利用三角形全等的“边边边”条件进行有条理的思考并进行简单的推理。导学过程预设:问题与情景师生行为设计意图活动1知识回顾引入新知活动内容:回顾全等三角形的定义及其性质。 全等三角形的定义:两个能够重合的三角形称为全等三角形。 全等三角形的性质:全等三角形的对应边、对应角相等。活动内容:回顾全等三角形的定义及其性质。 全等三角形的定义:两个能够重合的三角形称为全等三角形。 全等三角形的性质:全等三角形的对应边、对应角相等。活动目的:回忆前面学习过的知识,为探究新知识作准备。活动2创设情境提出问题活动内容:(屏幕显示)小明画了一个三角形,怎样才能画一个三角形与他的三角形全等? 教师加以分析,学生分小组进行讨论交流,师生互动合作。受教师启发,学生从最少的条件开始考虑:一个条件;两个条件;三个条件经过逐步分析,各种情况渐渐明朗,进行交流予以汇总、归纳。活动内容:(屏幕显示)小明画了一个三角形,怎样才能画一个三角形与他的三角形全等? 教师加以分析,学生分小组进行讨论交流,师生互动合作。受教师启发,学生从最少的条件开始考虑:一个条件;两个条件;三个条件经过逐步分析,各种情况渐渐明朗,进行交流予以汇总、归纳。学生能够在教师的启发下分小组讨论(四人搭配):一个条件、两个条件、三个条件逐步分析,进行交流,得出结论。对学生提出的解决问题的不同策略,教师要给予肯定和鼓励,以满足多样化的学生需要,发展学生个性思维。经过对各种情况的分析、归纳、总结,对学生渗透分类讨论的数学思想。活动目的:探索三角形的条件。我们知道全等三角形的三条边、三个角分别对应相等,反之这六个元素分别对应相等,这样的两个三角形也一定全等。但是,是否一定需要六个条件呢?条件能否尽可能少呢? 一个条件行吗?两个条件、三个条件呢?这就是我们这节课要探索的问题(自然引出课题)。活动3、建立模型探索发现活动内容:按照三角形“边、角”元素进行分类,师生共同归纳得出: 1. 一个条件:一角;一边2. 两个条件:两角;两边;一角一边3. 三个条件:三角; 三边;两角一边;两边一角活动4、 巩固运用及其推广活动内容:1.三角形全等的条件的练习题(P161问题解决1,对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)及补充习题。2.(实物演示)由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。(举例说明该性质在生活中的应用。)类比三角形,让学生动手操作,研究四边形、五边形有无稳定性?(学生拿出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具有稳定性。)图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。练习:P161 知识技能2(学生举反例说明)鼓励学生自己举出实例,体验数学在生活中的应用。活动5、反思小结布置作业按以上分类顺序动脑、动手操作验证。(对学生在分类中出现的问题,教师予以纠正。)验证过程可采取以下方式:想一想:对只给一个条件画三角形,画出的三角形一定全等吗?画一画:按照下面给出的两个条件做出三角形:(1)三角形的两个角分别是:30,50(2)三角形的两条边分别是:4cm,6cm(3)三角形的一个角为 30,一条边为3cm剪一剪:把所画的三角形分别剪下来。比一比:同一条件下作出的三角形与其他同学作的比一比,是否全等。教师收集学生的作品,加以比较,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等。下面将研究三个条件下三角形全等的判定。(学生模仿上面的研究方法,独立完成操作过程,通过交流,归纳得出结论。)(1)已知三角形的三个角分别为40、60、80,画出这个三角形,并与同伴比较是否全等。学生得出结论后,再举例体会一下。举例说明:如老师上课用的三角尺与同学用的三角板三个角分别对应相等,但一个大一个小,很显然不全等;再如同是等边三角形,边长不等,两个三角形也不全等,等等。(2)已知三角形的三条边分别是4cm,5cm,7cm,画出这个三角形,并与同伴比较是否全等。板演:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就确定了。1.三角形全等的条件的练习题(P161问题解决1,对有能力的学生要求把实际问题抽象成数学问题,根据自己的理解写出推理过程。对一般学生要求口头表达理由,并能说明每一步的根据。)及补充习题。2.(实物演示)由三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫三角形的稳定性。(举例说明该性质在生活中的应用。)类比三角形,让学生动手操作,研究四边形、五边形有无稳定性?(学生拿出准备好的硬纸条,进行实验,得出结论:四边形、五边形不具有稳定性。)图形的稳定性与不稳定性在生活中都有其作用,让学生举例说明。练习:P161 知识技能2(学生举反例说明)鼓励学生自己举出实例,体验数学在生活中的应用。实际教学效果:学生观察由三根木条钉成的三角形和由四根木条钉成的四边形框架,体会三角形的稳定性。通过这一实验演示,学生体会到了三角形这一特殊的性质,发现和体验数学在现实生活中的广泛应用,从而激发他们学习数学的热情,用所学的知识更好的解决实际问题。活动内容:教师引导、回顾反思本节课对知识的研究探索过程,小结方法及结论,提炼数学思想,掌握数学规律。学生在教师引导下结合本节课的知识点,对学习过程进行回顾反思,归纳整理。(边边边公理)三边对应相等的两个三角形全等。 三角形具有稳定性。实际教学效果:学生畅所欲言自己的实际收获,并且能利用三角形全等解决实际问题,体会到了三角形稳定性在实际生活中的应用。活动目的:营造自主探索空间,提供合作交流的场所,以学生的探求活动为主体,让学生参与经历、体验、感悟,“三角形全等条件”的形成与发展过程,并能举例说明。在举例时,利用多媒体辅助演示让学生感受反例的作用。活动目的:演示教具,引导学生由三根木条钉成的三角形框架和由四根木条钉成的四边形框架,体会三角形的稳定性,并进一步提出问题,你有办法使四边形的框架的形状不发生改变吗?三角形稳定性及四边形不稳定性在生活中有着广泛的应用.利用题组练习检测学生对知识的掌握情况及应用能力。活动目的:通过小结教养学生的概括能力,加深记忆。再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验。自我点评(1)本节课的设计体现了以教师为主导、学生为主体,以知识为载体、以培养学生的思维能力为重点的教学思想。教师以探究任务引导学生自学自悟的方式,提供了学生自主合作探究的舞台,营造了思维驰骋的空间,在经历知识的发现过程中,培养了学生分类、探究、合作、归纳的能力。(2)在课堂导学设计中,尽量为学生提供“做中学”的空间,不放过任何一个发展学生智力的契机,让学生在“做”的过程中,借助已有的知识和方法主动探索新知识,扩大认知结构,发展能力,完善人格,从而使课堂

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论