




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 2应用举例 1 正弦定理的变形有 a b c 用r表示 abc的外接圆半径 2 余弦定理的变形 cosc 2rsina 2rsinb 2rsinc sina sinb sinc 3 三角形的面积公式 1 用边a及a上的高ha表示为s 2 用两边a b及夹角c表示为s 实际应用问题中有关的名称 术语坡角 与的夹角 如图 1 所示 坡面 水平面 铅直 水平 仰角和俯角 与目标视线在同一铅垂平面内的视线和视线的夹角 目标视线在水平视线上方时叫 目标视线在水平视线下方时叫 如图 2 所示 方位角 指北的方向线旋转到目标方向线所成的水平角 如图 3 所示 方向角 的方向线与所成的小于90 的水平角 叫做方向角 它是方位角的另一种表示形式 基线 在测量上 根据测量需要适当确定的线段叫做基线 水平 目标 仰角 俯角 顺时针 指北或指南 目标线 解决测量问题时应注意哪些事项 提示 解决测量问题的关键是在弄清题意的基础上 画出表示实际问题的图形 并在图中标出有关的角和距离 再用正弦定理或余弦定理解三角形 最后将解得的结果转化为实际问题的解 思路点拨 先解 bcd求得bd 再解 adb来求ab 或先解 bcd求bc 再解 abc求ab 测量两个不可到达的点之间的距离问题 一般是把求距离问题转化为求三角形的边长问题 首先是明确题意根据条件和图形特点寻找可解的三角形 然后利用正弦定理或余弦定理求解 另外基线的选取要恰当 1 如图 为了测量河的宽度 在一岸边选定两点a b 望对岸的标记物c 测得 cab 45 cba 75 ab 120米 求河的宽度 a b是海平面上的两个点 相距800m 在a点测得山顶c的仰角为45 bad 120 又在b点测得 abd 45 其中d是点c到水平面的垂足 求山高cd 思路点拨 先求 bda 再由正弦定理求ad 测量高度时 由于被测物体的底部不能到达 或由于高度过高而无法测量时 可采用解三角形的办法 此时一般需构造一个与地面垂直的直角三角形 要注意仰角的应用 2 如果要测量某铁塔po的高度 但不能到达铁塔的底部 在只能使用简单的测量工具的前提下 你能设计出哪些测量方法 并求出每种方法的计算公式 解析 方法一 在地面上引一条基线ab 这条基线和塔底在同一水平面上 且延长后不过塔底 测出ab的长 用经纬仪测出角 和a对塔顶p的仰角 的大小 则可求出铁塔po的高 思路点拨 注意到最快追上走私船且两船所用时间相等 若在d处相遇 则可先在 abc中求出bc 再在 bcd中求 bcd 即缉私船沿北偏东60 方向能最快追上走私船 解决此类问题 首先应明确各个角的含义 然后分析题意 分清已知与所求 再根据题意画出正确的示意图 将图形中的已知量与未知量之间的关系转化为三角形的边与角的关系 运用正 余弦定理求解 3 甲船在a处遇险 在甲船西南10海里b处的乙船收到甲船的报警后 测得甲船是沿着东偏北105 的方向 以每小时9海里的速度向某岛靠近 如果乙船要在40分钟内追上甲船 问乙船应以什么速度 向何方向航行 解析 如图 如图所示 已知圆内接四边形abcd的边长分别为ab 2 bc 6 cd da 4 求四边形abcd的面积 思路点拨 先将所求面积转化为用某个角的三角函数表示 再利用对角互补及余弦定理求出该角 从而得到所求面积 将四边形的面积 转化为三角形的面积进行求解 通过解三角形求出三角形面积公式中所需边或角 1 解三角形应用题的步骤 1 准确理解题意 分清已知与所求 准确理解应用题中的有关名称 术语 2 根据题意画出图形 3 抽象或构造出三角形 标出已知 未知 4 将要求解的问题归结到一个或几个三角形中 通过合理运用正 余弦定理等有关知识建立数学模型 然后正确求解 演算过程要简练 计算要准确 最后作答 2 解三角形应用题中常见的情况及注意的问题解三角形应用题常见的几种情况 1 实际问题通过抽象概括 已知量与未知量全部集中在一个三角形中 可用正弦定理或余弦定理求解 2 实际问题通过抽象概括后 已知量与未知量涉及两个 或两个以上 三角形 这时需作出这些三角形 先解满足条件的三角形 然后逐步求出其他三角形中的解 有时需设出未知量 从几个三角形中列出方程 解方程得出所要求的解 3 实际问题抽象概括后 涉及的三角形只有一个 但由已知条件解三角形需选择使用正弦定理或余弦定理求问题的解 注意 解三角形应用题中 由于具体问题中给出的数据通常均为有效近似值 故运算过程一般较为复杂 可以借助于计算器进行运算 如果将正弦定理 余弦定理看成是几个 方程 的话 那么解三角形应用题的实质就是把已知量按方程的思想进行处理 解题时应根据已知量与未知量 合量选择一个比较容易解的方程 从而使解题过程简洁 某观测站c在城a的南偏西20 的方向 由城a出发的一条公路 走向是南偏东40 在c处测得公路上b处有一人 距c为31千米 正沿公路向a城走去 走了20千米后到达d处 此时cd间的距离为21千米 问 这人还要走多少千米才能到达a城 错因 本题在解 acd时 利用余弦定理求ad 产生了增解 而用正弦定理来求解便可避免这种错误 1 已知两座灯塔a和b与海洋观察站c的距离相等 灯塔a在观察站c的北偏东40 灯塔b在观察站c的南偏东60 则灯塔a在灯塔b的 a 北偏东10 b 北偏西10 c 南偏东10 d 南偏西10 答案 b 答案 d 3 如图 ab是铁路线上的一条穿山隧道 开凿前 在ab的山体外任选取一点c 为了测出ab的长度 给出以下几组数据 bc abc ac abc bac bc bc ac acb ac abc acb 其中 切实可行的数据是第 组 答案 4 如图 货轮在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论