




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的零点教案设计的内容 教案背景 (1)、课题:函数的零点 (2)、教材版本:人教B版数学必修(一) 第二章2.4.1函数的零点 (3)、课时:1课时 教材分析 (1)本节课的主要内容有函数零点的概念、函数零点存在性判定定理。函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。 (2)本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。 教学目标: 1、知识与技能 (1)理解函数(结合二次函数)零点的概念。 (2)领会函数零点与相应方程的根的关系,掌握零点存在的判定条件。 2、过程与方法 (1)通过观察例题的图象,发现函数在区间端点上的函数值之积的特点,找到连续函数在某个区间上存在零点的判断方法。 (2)让学生归纳本节所学知识。 3、情感、态度与价值观 在函数与方程的联系中体验数学中的转化思想的意义和价值,培养学生的观在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用体验数学内在美,激发学习热情,培养学生创新意识和科学精神。 教学重点:是函数零点的概念及求法 教学难点:是利用函数的零点作图教学方法: 教学方法:以教师为主导,以学生为主体,以能力发展为目标,从学生的认识规律出发进行启发式教学,利用课件,视频等引导学生对问题的思考,运用学生自主学习、小组合作探究的教学方式。 教学环节 (一)、课前延伸 1、知识链接,温故知新 求方程x22x30的实数根,并画出函数yx22x3的图象。 通过学生熟悉一元二次方程入手,观察函数图像与x轴的交点与相应方程根的关系,让学生建立数型结合的思想。(用投影仪展示函数图象) 【百度搜索】czsx.cooco./testdetail/26588/ 2、情景导引,体验概念 2ax?bx?c?0(a?0)的根与相应二次函数探究一元二次方程 y?ax2?bx?c(a?0)图象与x轴交点的关系?(师用投影仪展示表格,学生完 stu1.huanggao./stu1_course/0910shang/08281006001/SK_SX_13_01_003/。 说明:通过完成以上两个题目,让学生从具体到一般函数图像与x轴交点与相应方程根的关系。这一环节是为学生课内探究学习作好铺垫,使用方法是课前发下去,学生自己解答,上课后教师根据学生的反馈情况给予讲解。 3、自主学习,了解概念 2y?x?x?6的图像与x轴的交点与相应自学课本第70页,通过二次函数 方程根的关系了解函数的零点的概念。(师用投影仪展示图像,学生回答概念) 4、收集问题,把握学情 通过预习,引导学生通过自学,找出那些问题已经掌握,那些问题还有疑惑,有待教师解答。教师通过收集学生的预习学案,批阅之后发现学生存在的问题,以便准确的把握学情,作为课堂教学的重要依据。 (二)、课内探究 1、创设情境,导入新课 实际问题情境:在体育测试时,高一的一名男同学推铅球,已知铅球所经过的路线是某个二次函数图像的一部分,如图所示,如果这个男同学的出手处A点的坐标(0,2),铅球路线的最高处B点的坐标为(6,5) (1)求这个二次函数的解析式; (2)该男同学把铅球推出去多远? 说明:学生经过思考,得到结论:要求二次函数与 x轴的交点坐标,只要令y=0,解出相应方程的根即 可。 2、合作探究,形成概念 2y?x?x?6的图像,了解当y=0,y0,y0(1):课本第70页,通过画二次函数 相应x的取值(学生回答),初步了解函数零点的概念。 (2):通过预习案中二次函数图像表格中,让学生说出对应二次函数零点,进一步了解零点概念。 小组合作探究,由学生回答做法,教师作一下点拨,结合二次函数的图像,推广到一般函数零点的定义:一般的,如果函数y=f(x)在实数处的值等于零,即f()=0,则叫做这个函数的零点。在坐标系中表示图像与x轴的公共点(,0)点。 3、点拨指导,理解概念 通过对以上函数的零点的求解,可以得到结论:函数y=f(x)的零点就是方程f(x)=0实数根,亦即函数y=f(x)的图象与x轴交点的横坐标函数零点的个数即相应方程实数根的个数,也就是函数图像与x轴的交点个数。它们之间存在以下关系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJF 1221-2025汽车排气污染物检测用底盘测功机校准规范
- 2025甘肃定西市陇西县招聘城镇公益性岗位人员28人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025广东云浮市郁南县林业局招聘生态管护人员2人考前自测高频考点模拟试题及答案详解(新)
- 2025年湖南长沙市一中青竹湖湘一教育集团公开招聘教师50人模拟试卷及答案详解(全优)
- 2025年高硅氧玻璃纤维布合作协议书
- 安全培训教室必要性课件
- 小学安全员培训材料课件
- 2025贵州金丽农业旅游产业发展集团有限公司招聘经理层高级管理人员(财务总监)1人模拟试卷及参考答案详解
- 2025年可穿戴运动手环项目发展计划
- 2025年应急管理部所属单位第二批次公开招聘(秦皇岛有岗)考前自测高频考点模拟试题及一套答案详解
- 工厂品质协议书范本
- 邮政社招笔试试题及答案
- 出科考核规范
- 肩周炎的影像诊断
- 无伞空投技术研究进展及国外准备阶段分析
- 销售团队激励方案
- 日结工资合同(2025年版)
- 2025年配电专业运检题库
- 新增年产3.5万吨油液产品(润滑油、特种油、金属加工液、防冻液)项目环评资料环境影响
- 2025会计合同范本
- 《妊娠高血压的护理》课件
评论
0/150
提交评论