




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双曲线的几何性质:(1)范围、对称性 由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线 双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:,特殊点:实轴:长为, 叫做半实轴长 虚轴:长为,叫做虚半轴长双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异(3)渐近线过双曲线的渐近线() (4)离心率双曲线的焦距与实轴长的比,叫做双曲线的离心率 范围:双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔 由此可知,双曲线的离心率越大,它的开口就越阔 (5)等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率 (6)共渐近线的双曲线系 如果双曲线与有公共渐近线,可设为(7)双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线 其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线 常数e是双曲线的离心率(8)双曲线的准线方程:对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;对于来说,相对于上焦点对应着上准线;相对于下焦点对应着下准线(9).双曲线的焦半径(了解)定义:双曲线上任意一点M与双曲线焦点的连线段,叫做双曲线的焦半径 焦点在x轴上的双曲线的焦半径公式: (分别是左、右焦点)焦点在y轴上的双曲线的焦半径公式: (分别是下、上焦点)(10)双曲线的焦点弦:定义:过焦点的直线割双曲线所成的相交弦焦点弦公式: 当双曲线焦点在x轴上时,过左焦点与左支交于两点时: 过右焦点与右支交于两点时:当双曲线焦点在y轴上时,过左焦点与左支交于两点时:过右焦点与右支交于两点时:(11)双曲线的重要结论:(1)双曲线焦点到对应准线的距离(焦准距)。(2)过焦点且垂直于实轴的弦叫通经,其长度为:.(3)两焦半径与焦距构成三角形的面积.(4)焦点到渐近线的距离总是.(5)双曲线的切线方程: (1)双曲线上一点处的切线方程是. (2)过双曲线外一点所引两条切线的切点弦方程是. (3)双曲线与直线相切的条件是.名 称椭 圆双 曲 线图 象定 义平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆即 当22时,轨迹是椭圆 当2=2时,轨迹是一条线段 当22时,轨迹不存在平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线即当22时,轨迹是双曲线当2=2时,轨迹是两条射线当22时,轨迹不存在标准方 程 焦点在轴上时: 焦点在轴上时: 注:是根据分母的大小来判断焦点在哪一坐标轴上焦点在轴上时: 焦点在轴上时:常数的关 系 ,渐近线焦点在轴上时: 焦点在轴上时:课堂练习A组:1已知双曲线的离心率为,焦点是,则双曲线方程为()2平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为( )A B C D3过点,且焦点在坐标轴上的双曲线标准方程为_4.,经过点(5,2),焦点在轴上的双曲线标准方程为_5.与双曲线有相同焦点,且经过点的双曲线标准方程为_6双曲线的渐近线方程是 _ 7双曲线的实轴长为 _ 8已知方程表示椭圆,则的取值范围_9过双曲线左焦点的直线交曲线的左支于两点,为其右焦点,则的值为_ 10已知双曲线的离心率一个焦点到一条渐近线的距离为6,则其焦距等于 11已知双曲线的右焦点分别为、,点在双曲线上的左支上且,则=_12已知、是椭圆C:的两个焦点,点在椭圆C上且满足,则的面积_13已知椭圆及直线(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程课堂练习B组:1设分别是双曲线的左、右焦点若点在双曲线上,且,则( )ABCD2已知点P是双曲线右支上一点,分别为双曲线的左、右焦点,为的内心,若成立,则的值为 ( ) A.B.C. D.3若椭圆和双曲线有相同的焦点和,而是这两条曲线的一个交点,则的值是() ABCD4在平面直角坐标系中,已知顶点和,顶点在椭圆上,则 5已知双曲线的一条渐近线的法向量是,那么 6已知椭圆和双
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广西玉林公考试题及答案
- 绥化中考结业考试试卷及答案
- 重庆农教考试真题及答案
- 会计大专自考试卷及答案
- 卫生监督考试试题及答案
- 急性播散性脑炎课件
- 浙江足球统考试卷及答案
- 2025年国际贸易实务操作经验与面试模拟题集
- 2025年侨务办公室招聘考试高频考点回顾
- 2025年全国政协机关面试指南热点问题和答案解析
- 体育心理学(第三版)课件第三章运动兴趣和动机
- Unit1Developingideaslittlewhitelies课件-高中英语外研版必修第三册
- 培训反馈意见表
- 四年级上册心理健康教育课件-健康的情绪表达 全国通用(共16张PPT)
- 商业银行资产管理与负债管理
- 电力系统分析孙淑琴案例吉玲power程序实验指导书
- 集成电路版图设计(适合微电子专业)
- 高标准农田建设项目施工组织设计 (5)
- 发动机装调工技师考试资料
- 轻型动力触探试验记录表
- ASME_B36.10M美标钢管外径壁厚对照表
评论
0/150
提交评论