




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
双曲线及其标准方程一、选择题1双曲线的焦距为( )A3 B4 C3 D42双曲线的焦距为( )。A B C D3双曲线的焦距是( )A8 B4 C D与有关4双曲线x22-y21=1的焦点坐标是()A.(1,0), (-1,0) B.(0,1),(0,-1)C.(3,0),(-3,0) D.(0,3),(0,-3)5双曲线的焦距为A BC D6双曲线方程为,则它的右焦点坐标为 ( )。A.B.C.D.7直线与双曲线仅有一个公共点,则实数的值为A1 B-1 C1或-1 D . 1或-1或08双曲线的焦点坐标是()AB CD 9双曲线的右焦点的坐标为( )A . B. C. D. 10已知双曲线的焦点为F1、F2,点M在双曲线上,且轴,则F1到F2M距离是( ).A. B. C. D. 11过点(0,1)与双曲线仅有一个公共点的直线共有( )A.1条 B. 2条 C.3条 D.4条12以双曲线的一个焦点为圆心,离心率为半径的圆的方程是( )A BC D13设为双曲线的两个焦点,点在双曲线上且满足,则的面积是( )A.1 B. C.2 D.14若的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件15双曲线的焦距为( )A. 3B. 4C. 3D. 4二、填空题16在平面直角坐标系xOy中,双曲线的焦距是 .17设为常数,若点F(5,0)是双曲线的一个焦点,则= 18若双曲线上一点到左焦点的距离为4,则点到右焦点的距离是 .19若直线y=kx-1与双曲线只有一个公共点,则k= 20双曲线的焦点坐标为 21以C:的焦点为顶点,顶点为焦点的椭圆的方程为 22设定点、,动点满足:,则动点的轨迹方程为 23双曲线的一个焦点是,则_;24若直线与双曲线始终有公共点,则取值范围是 。25已知F1、F2分别是双曲线的左、右焦点,点P是双曲线上的点,且|P F1|=3,则|PF2|的值为 .26已知为双曲线C: 的左、右焦点,点P在C上,若则= . 27过原点与双曲线交于两点的直线的斜率的取值范围是 。28若方程表示双曲线,则的取值范围是 29设为双曲线的两个焦点,点在双曲线上且满足,则的面积是_。三、解答题30已知双曲线C: (1) 若与C有两个不同的交点,求实数k的取值范围;(2) 若与C交于A,B两点,O是坐标原点,且求实数k的值.31椭圆与双曲线且有相同的焦点,求值。32设双曲线与椭圆有共同的焦点,且与椭圆的一个交点的纵坐标为,求双曲线的方程。参考答案1D【解析】试题分析:本题比较简明,需要注意的是容易将双曲线中三个量a,b,c的关系与椭圆混淆,而错选B解析:由双曲线方程得a2=10,b2=2,c2=12,于是,故选D考点:双曲线的简单性质2D【解析】试题分析:由双曲线方程可知,所以焦距考点:双曲线方程及性质3A【解析】试题分析:由题意可得, 焦距2c=8,故选A考点:双曲线的简单性质4C【解析】c2=a2+b2=2+1=3,所以c=3.由焦点在x轴上.所以焦点坐标为(3,0),(-3,0).5D【解析】试题分析:由条件知,.考点:双曲线的定义.6C【解析】试题分析:双曲线方程为,c=,它的右焦点坐标为,故选C考点:本题考查了双曲线的性质点评:熟练掌握双曲线中a、b、c的关系是解决此类问题的关键7C【解析】试题分析:由得:,当,此时方程只有一根,所以直线与双曲线仅有一个公共点;当时,要满足题意需,此时无解。所以直线与双曲线仅有一个公共点,则实数的值为1或-1。考点:直线与双曲线的位置关系。点评:在判断直线与双曲线的位置关系时,一般的方法是联立,组成方程组,消元,判断方程解的个数。一定要注意讨论二次项系数是否为0的情况。8C【解析】试题分析:因为双曲线方程为,因此可知故其有两个焦点,分别是,因此选C.考点:本题主要是考查双曲线的几何性质的运用。点评:解决该试题的关键是理解双曲线中a,b表示的值,以及a,b,c的关系的运用。9C【解析】试题分析:因为,所以右焦点坐标为。考点:本题考查双曲线的简单性质。点评:直接考查双曲线的焦点坐标,属于基础题型。10C【解析】.11D【解析】试题分析:有四条,分成两类:一类是与渐近线平行交线,有两条;另一类是切线,有两条.考点:直线与圆锥曲线的位置关系.12A【解析】试题分析:由双曲线,可知,焦点为,所以圆的方程为.考点:双曲线的性质、圆的方程13A【解析】由双曲线定义得则的面积是 故选A14A【解析】15D【解析】解:因为双曲线中a=,b=,c=,那么利用a,b,c的关系式可知焦距为2c=4选D.16【解析】试题分析:故答案应填:【考点】双曲线性质【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相关,明确双曲线标准方程中各个量的对应关系是解题的关键,揭示焦点在x轴,实轴长为,虚轴长为,焦距为,渐近线方程为,离心率为1716【解析】试题分析:直接由点F(5,0)是双曲线的一个焦点及可得,解得考点:双曲线的简单性质1810【解析】试题分析:由双曲线方程可知,由定义得考点:双曲线定义点评:双曲线上的点到两焦点距离之差的绝对值等于19,【解析】试题分析:因为双曲线的渐近线为,所以当直线y=kx-1与渐近线平行时,也只有一个公共点,所以,由y=kx-1与联立消去y整理后得,所以,所以k的值有,.考点:直线与双曲线的位置关系.点评:直线与双曲线只有一个公共点包含两种情况:一是与双曲线的渐近线平行,二是直线与双曲线相切.20【解析】本试题主要是考查了双曲线的性质的运用。因为双曲线,化为标准式后,可知,因此可知焦点在y轴上,那么焦点坐标为,故答案为。解决该试题的关键是化为标准方程,然后利用a,b的值得到c的值。21【解析】因为以C:的焦点为(3,0)顶点,顶点(2,0)为焦点的椭圆的方程为22【解析】解:因为利用双曲线的定义可知,动点到定点的距离之差为2,小于两定点的距离。4,所以表示的为双曲线的一支,且2a=2,a=1,c=2,因此双曲线的方程为231【解析】解:因为双曲线,且它的的一个焦点是,故,得到结论124 【解析】解:由题意令得x2-(kx-1)2=4,整理得(1-k2)x2+2kx-5=0当1-k2=0,k=1时,显然符合条件;当1-k20时,有=20-16k20,解得k或k-综上,k取值范围是k=1,k或k-257; 【解析】试题分析:因为点P是双曲线上的点,所以|P F1|PF2|=4,解得|PF2|=7.考点:本题主要考查双曲线的定义及其几何性质点评:简单题,涉及双曲线上的点到焦点的距离,一般要考虑应用定义。2617【解析】因为a=4,c=6,若P在右支上,则,所以点P在左支上,所以.解本小题的关键是判断出点P在哪支上,然后再注意利用双曲线的定义求解。27【解析】将双曲线化为,渐近线的斜率为,。(注:此题若焦点在轴上,则应为两斜率之间。)28【解析】考点:双曲线的简单性质。分析:根据双曲线定义可知,要使方程表示双曲线,则k+2和5-k同号,进而求得k的范围。解答:依题意方程表示双曲线,可知(k+2)(5-k)0,求得-2k5。故k的范围为:(-2,5)。点评:本题主要考查了双曲线的标准方程,解答的关键是根据双曲线的标准方程建立不等关系。291【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨平台数据整合-第6篇-洞察与解读
- 2025年事业单位教师招聘地理学科专业知识模拟试卷及答案
- 2025年医院事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷
- 2025年事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷难点解析
- 2025年气象类事业单位招聘考试综合类结构化面试真题模拟试卷
- 衡阳初一考试题目及答案
- 纳米技术神经修复-洞察与解读
- 企业间知识共享机制-洞察与解读
- 河南中专团员考试题及答案
- 2025年中国无碳复写纸行业市场分析及投资价值评估前景预测报告
- GB/T 17553.1-1998识别卡无触点集成电路卡第1部分:物理特性
- 2023年西藏山南雅砻天然饮品有限公司招聘笔试模拟试题及答案解析
- 高速铁路客运设施设备课件
- 海南矿产资源概况
- (通用版)水利安全员考试试题库及答案
- 编版一年级下册 《荷叶圆圆》2022年小学语文作业设计
- 施工现场安全检查记录表(周)以及详细记录
- 汽车配件购销合同集合
- 雨污水管道表格全全套资料
- 石库门——中西合璧建筑的典范
- 数独比赛六宫练习题96道练习
评论
0/150
提交评论