


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10.3解二元一次方程组教学目标1.知识与技能1、会用加减消元法解二元一次方程组.2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组,初步体验二元一次方程组解法的多样性和选择性.2.过程与方法 通过探求二元一次方程组的解法,经历把“二元”转化为“一元”的过程,从而体会消元的思想,以及把“未知”转化为“已知”,把复杂问题转化为简单问题的化归思想。3.情感、态度与价值观在数学学习活动中,获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点会用加减消元法解二元一次方程组教学难点将较复杂的方程组转化为两个方程中的某一未知数的系数的绝对值相等的方程组.教学过程(一)创设情境 导入新课情境买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?设苹果汁、橙汁单价为x元,y元。我们可以列出方程组 我们已学过解二元一次方程组的什么方法?解二元一次方程组的基本思路是什么?(二)合作交流 解读探究用加减消元法解二元一次方程组.1.解方程组做一做 用代入消元法解此方程组,并交流解法.回忆 等式的基本性质是什么?等式两边都加上或减去同一个数或同一个整式,所得的结果仍是等式. 等式两边都乘或除以同一个不等于零的数,所得的结果仍是等式.探索 (1)观察此方程组的未知数的系数有何特点?你发现有其它解法吗? (2)此方程组可根据等式的基本性质的哪一条“消元”?由此将“二元”转化为“一元”.(等式的基本性质1) (3) 试一试:讨论、合作、交流.比一比 上述两种方法哪一种更简便?2.怎样解前面情境中的方程组 讨论、交流 怎样解此方程组比较简便?试写出解题过程.3.解方程组想一想 能否用代入消元法解此方程组?能否运用类似于上例的第二种解题方法?议一议要运用类似于上例的解题方法,则需要将此方程组作怎样的变形,可使未知数的系数发生变化?根据是什么?(等式的基本性质2)归纳 上述解二元一次方程组的方法叫加减消元法,你能概括吗?把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(elimination by addition or subtraction) ,简称加减法。(三)应用迁移 巩固提高类型之一用加减法解某一未知数的系数相同或是相反数的二元一次方程组例1 解方程组类型之二用加减法解某一未知数的系数成整数倍数关系的二元一次方程组例2 解方程组类型之三用加减法解两个未知数的系数均不成整数倍数关系的方程组5. 例3用加减法解方程组(四)总结反思 拓展升华用加减法解二元一次方程组的一般步骤: 将其中一个未知数的系数化为相同(或互为相反数); 通过相减(或相加)消去这个未知数,得到一个一元一次方程; 解这个一元一次方程,得到这个未知数的值; 将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级上学期期末模拟测试语文(四)(全国)试卷及答案
- 重庆江津市2025年上半年事业单位公开遴选试题含答案分析
- 河北省蠡县2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度长途旅行车辆租赁及保障服务合同
- 2025版高性能变频器研发与生产合作协议
- 2025版水田灌溉设施共享与维护服务合同范本
- 2025年度专业法律顾问团队服务合同
- 2025年度餐饮业智能点餐系统合作协议
- 2025版教育培训机构合作区间合同范本
- 2025年度美容美发店门面租赁及服务套餐合同
- 2025年度制造业员工劳动合同范本
- 2025制衣厂生产合作协议范本
- 无纺布行业知识培训总结
- 2025年秋季教导处工作计划-深耕细作教研路笃行不怠启新程
- 2024象山县辅警招聘考试真题
- 党建品牌创新活动创新路径与实践探索
- 2025年保山辅警考试题库(附答案)
- 合同基础知识培训课件教学
- 福建省泉州市晋江市2024-2025学年七年级(下)期末语文试卷(含解析)
- 2025年浙江省慈溪市辅警招聘考试试题题库带答案详解
- 2025成人高考政治试题及答案专升本
评论
0/150
提交评论