数学人教版七年级下册8.3 实际问题与二元一次方程.docx_第1页
数学人教版七年级下册8.3 实际问题与二元一次方程.docx_第2页
数学人教版七年级下册8.3 实际问题与二元一次方程.docx_第3页
数学人教版七年级下册8.3 实际问题与二元一次方程.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.3 实际问题与二元一次方程(1)教学目标 学会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用。重点难点 解决含有多个未知数的实际问题是重点;找出问题中的两个等量关系是难点。教学过程 一、导入新课前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组本节我们继续探究如何用方程组解决实际问题 二、 例题 看下面的问题。投影1例 养牛场原有30只母牛和15只小牛,一天约需用饲料675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 kg.饲养员李大叔估计平均每只母牛1天约需用饲料1820 kg,每只小牛1天约需用饲料78 kg.你能否通过计算检验他的估计?分析:怎样检验李大叔的估计是否正确?(1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验;(2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确本题的等量关系是什么?30只母牛一天用的饲料量+15只小牛一天用的饲料量=675 (1)(30+12)只母牛一天用的饲料量+(15+5)只小牛一天用的饲料量=940(2)设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg, 根据题意可列怎样的方程组?解这个方程组得答:每只母牛和每只小牛1天各需用饲料为20kg和5kg,饲料员李大叔对母牛的食量估计正确,对小牛食量估计有一定的偏差。三、课堂练习投影某所中学现在有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?答案:四、作业:课本108面1、2、3题。补充练习:一千零一夜中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了”你知道树上、树下各有多少只鸽子吗?五、教学反思引导学生探寻解题思路,并对各种方法进行比较,方法一主要是对估算的运用,而方法二是方程思想的应用。在教学中,注重解题分步到位,渗透模型化的思想。规范解题步骤,培养学生有条理地思考、表达的习惯。让学生认识到检验的重要性,并学会正确作答。8.3 实际问题与二元一次方程(2)教学目标 学会借助二元一次方程组解决有关配套与设计的实际问题,再次体会二元一次方程组与现实生活的联系和作用。重点难点 运用二元一次方程解决有关配套与设计的应用题是重点;找出问题中的两个等量关系是难点。教学过程一、导入新课前面我们初步体验了用方程组解决实际问题的全过程,其实生产、生活中还有许多问题也能用方程组解决 二、 例题 看下面的问题:投影1例 据统计资料,甲、乙两种作物的单位面积产量的比是1:1 :5,现要在一块长200 m,宽100 m的长方形土地,分为两块长方形土地,分别种植两种作物,怎样划分这块地,使甲、乙两种作物的总产量的比是3:4(结果取整数)?分析:本题中的基本关系是什么?本题中的等量关系有哪些?总产量单位面积产量面积甲作物的单位面积产量乙作物的单位面积产量11.5甲作物的总产量乙作物的总产量34怎样划分这块土地呢?第一种是甲、乙两种作物的种植区域分别为长方形AEFD和BCFE,如图(1);第二种是甲、乙两种作物的种植区域分别为长方形ABFE和FECD,如图(2)。 ABCDEF (1) (2)对第一种种植方案,设AE=xm,BE=ym,可得怎样的方程组?解这个方程组,得具体怎么划分呢?请你作答。过长方形土地的长边上离一端约106 m处,把这块地分为两个长方形较大一块地种甲作物,较小一块地种乙作物你能求出第二种种植方案的答案吗?试试看。三、课堂练习投影2一种圆凳由一个凳面和三条腿组成,如果1立方米木材可制作300条腿或制作凳面50个,现有9立方米的木材,为充分利用材料,请你设计一下,用多少木材做凳面,用多少木材做凳腿,最多能生产多少张圆凳?作业:课本108面4、6题投影3补充题:一个长方形,把它的长减少4cm,宽增加2cm,变成一个正方形,且面积与长方形的面积相等,怎样划分长方形?教学反思估算有一定的实用价值,要注意培养学生的这种能力,估算通常会产生一定的误差,通过精算可以对估算结果进行检验。利用方程(组)解决实际问题的关键是弄清题意中蕴含的数量关系。根据数量关系列出方程求解,注意实际问题的求解要进行检验。8.3 实际问题与二元一次方程(3)教学目标 学会用列表的方式分析、解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用。重点难点 解决含有多个未知数的实际问题是重点;用列表分问题中的数量关系是难点。教学过程 一、情景导入最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案通常白天的用电称为高峰用电,即8:0022:00,深夜的用电是低谷用电即22:00次日8:00.投影1若某地的高峰电价为每千瓦时0.56元,低谷电价为每千瓦时0.28元八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗?像这样的实际问题还有很多。二、例题投影2例 如图,长青化工厂与A,B两地有公路、铁路相连这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地公路运价为1. 5元(吨千米),铁路运价为1.2元(吨千米),这两次运输共支出公路运费15000元,铁路运费97200元这批产品的销售款比原料费与运输费的和多多少元? AB铁路120km公路10km长春化工厂铁路110km公路20km分析:要求“这批产品的销售款比原料费与运输费的和多多少元?”我们必须知道什么?销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关因此,我们必须知道产品的数量和原料的数量。本题涉及的量较多,我们知道,这种情况下常用列表的方式来处理。本题涉及哪两类量呢?一类是公路运费,铁路运费,价值;二类是产品数量,原料数量。设产品重x吨,原料重y吨,列表如下:产品x吨原料y吨合计公路运费(元)1.520x1.510y1.5(20x+10y)铁路运费(元)1.2110x1.120y1.2(110x+120y)价值(元)8000x1000y由上表可列方程组解这个方程组,得销售款:8000300=2400000; 原料费:1000400=400000;运输费:15000+97200=112200.所以这批产品的销售款比原料费与运输的和多1887800元.三、课堂练习前面我们提到过峰谷电价问题,你能求出小彬家高峰用电量和低谷用电量各是多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论