




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学归纳法例题例请读者分析下面的证法:证明:n=1时,左边,右边,左边=右边,等式成立假设n=k时,等式成立,即:那么当n=k+1时,有:这就是说,当n=k+1时,等式亦成立由、可知,对一切自然数n等式成立评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k这一步,当n=k+1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求正确方法是:当n=k+1时这就说明,当n=k+1时,等式亦成立,例2是否存在一个等差数列an,使得对任何自然数n,等式:a1+2a2+3a3+nan=n(n+1)(n+2)都成立,并证明你的结论分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来an,然后再证明一般性解:将n=1,2,3分别代入等式得方程组,解得a1=6,a2=9,a3=12,则d=3故存在一个等差数列an=3n+3,当n=1,2,3时,已知等式成立下面用数学归纳法证明存在一个等差数列an=3n+3,对大于3的自然数,等式a1+2a2+3a3+nan=n(n+1)(n+2)都成立因为起始值已证,可证第二步骤假设n=k时,等式成立,即a1+2a2+3a3+kak=k(k+1)(k+2)那么当n=k+1时,a1+2a2+3a3+kak +(k+1)ak+1= k(k+1)(k+2)+ (k+1)3(k+1)+3=(k+1)(k2+2k+3k+6)=(k+1)(k+2)(k+3)=(k+1)(k+1)+1(k+1)+2这就是说,当n=k+1时,也存在一个等差数列an=3n+3使a1+2a2+3a3+nan=n(n+1)(n+2)成立综合上述,可知存在一个等差数列an=3n+3,对任何自然数n,等式a1+2a2+3a3+nan=n(n+1)(n+2)都成立例3证明不等式 (nN)证明:当n=1时,左边=1,右边=2左边2*3+1,2的n次方大于2n+1成立设nk,k3时成立则:2(k+1)=2*2k2*(2k+1)=4k+22k+82(k+1)+1n=k+1时成立所以,2的n次方大于2n+1,n是大于2的整数证明:当且仅当指数n不能被4整除时,1n2n3n4n能被5整除证明 设A=1n2n3n4n,当n=4k(k为整数)时,1n、3n的个位数均为1,2n、4n的个位均为6,1+1+6+6=14,A的个位为4,显然A不能被5整除当n4k时,若n=4k+1,易知A的个位=(1+2+3+4)的个位=0,A能被5整除当n=4k+2时,A的个位=(1+4+9+16)的个位=0,A能被5整除当n=4k+3时,A的个位=(1+8+27+64)的个位=0,A能被5整除综上所述,当且仅当指数n不能被4整除时,A能被5整除,也即当且仅当指数n不能被4整除时,1n2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部编版五年级语文上册教学评估计划
- 儿童病历质量评估与整改措施
- 随班就读个别化教学兴趣激发计划
- 九年级下班主任班情分析与改进计划
- 通信行业财务经理2025年度工作计划
- 文旅产业年度应急演练工作计划
- 物业安保服务创收计划
- 运营助理2025年工作总结及2025年工作计划
- 国际贸易综合管理部2025年工作总结及2025年工作计划
- 幼儿园2024-2025学年度智力开发活动计划
- 虹桥商务区核心区一期及南北片区集中供能专项规划
- 灌浆施工工艺
- 北京市西城外国语学校2024-2025学年高三上学期开学测试 数学试题含答案
- GB/T 44260-2024虚拟电厂资源配置与评估技术规范
- 地锚抗拔力计算
- 医院科研诚信管理办法
- 智慧工厂F5G全光网应用技术白皮书
- 教科版四年级科学上册全册教学设计(表格式)
- 人教版九年级化学下册全册教案
- 24年山东省事业单位考试C类考试真题和答案
- 专题09 完形填空 考点2 生活哲理类(第01期)-学易金卷:2023年中考英语真题分项汇编(全国通用)(解析版)
评论
0/150
提交评论