



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学常用公式及结论圆锥曲线1.椭圆的参数方程是.2.椭圆焦半径公式 ,.3椭圆的的内外部(1)点在椭圆的内部.(2)点在椭圆的外部.4. 椭圆的切线方程 (1)椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是. (3)椭圆与直线相切的条件是.5.双曲线的焦半径公式,.6.双曲线的内外部(1)点在双曲线的内部.(2)点在双曲线的外部.7.双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,焦点在y轴上).8. 双曲线的切线方程 (1)双曲线上一点处的切线方程是. (2)过双曲线外一点所引两条切线的切点弦方程是. (3)双曲线与直线相切的条件是.9. 抛物线的焦半径公式抛物线焦半径.过焦点弦长.10.抛物线上的动点可设为P或 P,其中 .11.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.12.抛物线的内外部(1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4) 点在抛物线的内部.点在抛物线的外部.13. 抛物线的切线方程(1)抛物线上一点处的切线方程是. (2)过抛物线外一点所引两条切线的切点弦方程是. (3)抛物线与直线相切的条件是.14.两个常见的曲线系方程(1)过曲线,的交点的曲线系方程是(为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.15.直线与圆锥曲线相交的弦长公式 或(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). 16.圆锥曲线的两类对称问题(1)曲线关于点成中心对称的曲线是.(2)曲线关于直线成轴对称的曲线是.17.“四线”一方程 对于一般的二次曲线,用代,用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚双方共同财产清算及债务处理协议
- 土木工程项目施工方案
- 民生工程物业权益转让与公共服务合同
- 深度剖析行政合同在环境保护执法中的实践与挑战
- 施工现场文明施工管理方案
- 夫妻离婚股权分割与公司经营权转让综合协议
- 离婚协议书起草与财产分配协议
- 离婚协议及子女抚养权、财产分配、债务处理详细约定
- 羊草产业化发展的优势与必要性探讨
- 文化创意产业园租金支付与产业发展合作合同
- 法律援助法普法活动方案
- 食管恶性肿瘤护理查房
- 发热病人的护理课件
- 智能装备产业行动计划
- 新生儿湿疹护理与防治要点
- 高效农贸市场管理与运营合作协议
- 诸暨市家政服务员(母婴护理员)职业技能大赛技术文件
- CJ/T 81-2015机械搅拌澄清池搅拌机
- T/SHPTA 082-2024光伏组件封装用共挤EPE胶膜
- 企业合规经营及纳税证明书(5篇)
- 深圳入户委托协议书
评论
0/150
提交评论