概率期望方差分布列 测试题 学生.doc_第1页
概率期望方差分布列 测试题 学生.doc_第2页
概率期望方差分布列 测试题 学生.doc_第3页
概率期望方差分布列 测试题 学生.doc_第4页
概率期望方差分布列 测试题 学生.doc_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

期望方差分布列测试一、选择题:每小题5分,共60分在每小题给出的四个选项中,只有一项是符合要求)1甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜根据经验,每局比赛中甲获胜的概率为06,则本次比赛甲获胜的概率是(A) 0216 (B)036 (C)0432 (D)06482从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A) (B)(C) (D)已知的分布列为:且设设是离散性随机变量,的值为() 5连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是( )A B C D6一射手对靶射击,直到第一次命中为止,每次命中率均为,现共有发子弹,命中后尚余子弹数的期望为()7如图,三行三列的方阵中有9个数,从中任取三个数,则至少有两个数位于同行或同列的概率是( )A B C D8将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a,甲、乙分到同一组的概率为p,则a、p的值分别为( )A a=105 p= B.a=105 p= C.a=210 p= D.a=210 p=9将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为() 10某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A B C D11 以平行六面体ABCDABCD的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为( )信号源AB C D12右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A)(B)(C)(D)二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上13、随机变量的分布列如下:其中成等差数列,若,则的值是 14在某项测量中,测量结果服从正态分布若在内取值的概率为0.4,则在内取值的概率为 15位于坐标原点的一个质点按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,质点移动五次后位于点的概率是 16某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 .三、解答题:本大题共5小题,共70分解答应写出文字说明,证明过程或演算步骤17 设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为,遇到红灯(禁止通行)的概率为。假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求:(1)的概率的分布列及期望E; (2 ) 停车时最多已通过3个路口的概率.18某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的. ()求3个景区都有部门选择的概率; ()求恰有2个景区有部门选择的概率.19一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有部电话占线.试求随机变量的概率分布和它的期望.0某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如下图(例如,ACD算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为)(1)请你为其选择一条由A到B的路线,便得途中发生堵车事件的概率最小;(2)若记路线ACFB中遇到堵车次数为随机变量,求的数学期望E21某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. ()在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; ()在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;()当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).1、(重庆理)(7)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为(A) (B) (C) (D)【解答】可从对立面考虑,即三张价格均不相同,11、(浙江文)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜根据经验,每局比赛中甲获胜的概率为06,则本次比赛甲获胜的概率是(A1 0216 (B)036 (C)0432 (D)0648【解答】甲获胜有两种情况,一是甲以2:0获胜,此时二是甲以2:1获胜,此时,故甲获胜的概率【高考考点】独立重复事件恰好发生n次的概率【易错点】:利用公式求得答案C,忽视了问题的实际意义。17、(山东理)位于坐标原点的一个质点按下列规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是,质点移动五次后位于点的概率是( )A B C D【解答】质点在移动过程中向右移动2次向上移动3次,因此质点P 移动5次后位于点的概率为。32、(江西理)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为() 【解答】一骰子连续抛掷三次得到的数列共有个,其中为等差数列有三类:(1)公差为0的有6个;(2)公差为1或-1的有8个;(3)公差为2或-2的有4个,共有18个,成等差数列的概率为,选B40、(湖北理)连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是( )A B C D【解答】由向量夹角的定义,图形直观可得,当点位于直线上及其下方时,满足,点的总个数为个,而位于直线上及其下方的点有个,故所求概率,选C点评:本题综合考察向量夹角,等可能事件概率的计算以及数形结合的知识和方法48、(福建理)如图,三行三列的方阵中有9个数,从中任取三个数,则至少有两个数位于同行或同列的概率是( )A B C D【解答】从中任取三个数共有种取法,没有同行、同列的取法有,至少有两个数位于同行或同列的概率是,选已知的分布列为:且设设是离散性随机变量,的值为() 一射手对靶射击,直到第一次命中为止,每次命中率均为,现共有发子弹,命中后尚余子弹数的期望为()22004年全国高考(山东山西河南河北江西安徽)理科数学第11题从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )ABCD6(2004年重庆高考理工第11题)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( ) A B C D5(2005湖北卷理第12题)以平行六面体ABCDABCD的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为( )AB C D6.(2005江西卷理第12题)将1,2,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( )ABCD信号源5(2006年江苏卷)右图中有一个信号源和五个接收器。接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是(A)(B)(C)(D)解:由题意,左端的六个接线点随机地平均分成三组有种分法,同理右端的六个接线点也随机地平均分成三组有种分法;要五个接收器能同时接收到信号,则需五个接收器与信号源串联在同一个线路中,即五个接收器的一个全排列,再将排列后的第一个元素与信号源左端连接,最后一个元素与信号源右端连接,所以符合条件的连接方式共有种,所求的概率是,故选(D)点评:本题要求学生能够熟练运用排列组合知识解决计数问题,并进一步求得概率问题,其中隐含着平均分组问题。6将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a,甲、乙分到同一组的概率为p,则a、p的值分别为( A )B a=105 p= B.a=105 p= C.a=210 p= D.a=210 p=解:a105甲、乙分在同一组的方法种数有(1) 若甲、乙分在3人组,有15种(2) 若甲、乙分在2人组,有10种,故共有25种,所以P故选A10、(浙江理)(15)随机变量的分布列如下:其中成等差数列,若,则的值是 【解答】成等差数列,有联立三式得1(2006年福建卷)一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2。将这个小正方体抛掷2次,则向上的数之积的数学期望是。20、(全国II理)在某项测量中,测量结果服从正态分布若在内取值的概率为0.4,则在内取值的概率为 0.8【解答】在某项测量中,测量结果x服从正态分布N(1,s2)(s0),正态分布图象的对称轴为x=1,x在(0,1)内取值的概率为0.4,可知,随机变量在(1,2)内取值的概率于x在(0,1)内取值的概率相同,也为0.4,这样随机变量在(0,2)内取值的概率为0.8。3.(2005重庆卷理第15题)某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为 .一 解答题2 设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为,遇到红灯(禁止通行)的概率为。假定汽车只在遇到红灯或到达目的地才停止前进,表示停车时已经通过的路口数,求:(1)的概率的分布列及期望E; (2 ) 停车时最多已通过3个路口的概率.一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有部电话占线.试求随机变量的概率分布和它的期望.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止1个小组,具体情况如图316所示。随机选取一个成员。(1)他属于至少.2个小组的概率是多少?(2)他属于不超过2个小组的概率是多少?某先生居住在城镇的A处,准备开车到单位B处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如下图(例如,ACD算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为)(1)请你为其选择一条由A到B的路线,便得途中发生堵车事件的概率最小;(2)若记路线ACFB中遇到堵车次数为随机变量,求的数学期望E21. (1)的所有可能值为0,1,2,3,4用AK表示“汽车通过第k个路口时不停(遇绿灯)”,则P(AK)=独立.故, 从而有分布列:01234P.(2).答:停车时最多已通过3个路口的概率为.P(=0)=0.520.62=0.09. P(=1)= 0.520.62+ 0.520.40.6=0.3 P(=2)= 0.520.62+0.520.40.6+ 0.520.42=0.37. P(=3)= 0.520.40.6+0.520.42=0.2 P(=4)= 0.520.42=0.04于是得到随机变量的概率分布列为:01234P0.090.30.370.20.04所以E=00.09+10.3+20.37+30.2+40.04=1.8.(1)记路段MN发生堵车事件为MN因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线ACDB中遇到堵车的概率P1为1P()= 1P()P()P() = 11P(AC)1P(CD)1P(DB)=1 =同理:路线ACFB中遇到堵车的概率为P2为1P()=(小于)路线AEFB中遇到堵车的概率P3为1P()=(小于)显然要使得由A到B的路线途中发生堵车事件的概率最小,只可能在以上三条路线中选择。因此选择路线ACFB,可使得途中发生堵车事件的概率最小(2)路线ACFB中遇到堵车次数可取值为0,1,2,3P(=0)= P()=,P(=1)= P(AC)+P(CF)+P(FB) =+=,P(=2)=P(ACCF)+P(ACFB)+P(CFFB) =+=,P(=3)=P(ACCF)=,E= 0 答:路线ACFB中遇到堵车次数的数学期望为17(2005湖北卷文第21题,本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p1,寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. ()在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; ()在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; ()当p1=0.8,p2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).17(2005湖北卷文第21题,本小题满分12分)解:(I)在第一次更换灯泡工作中,不需要换灯泡的概率为需要更换2只灯泡的概率为(II)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-p1)2;在第一次未更换灯泡而在第二次需要更换灯泡的概率为p1(1-p2),故所求的概率为(III)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论