



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二元一次方程组解法代入法(提高)知识讲解【学习目标】1. 理解消元的思想;2. 会用代入法解二元一次方程组.【要点梳理】要点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法 通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的(2)代入消元法的技巧是:当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;若方程组中有未知数的系数为1(或-1)的方程则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便【典型例题】类型一、用代入法解二元一次方程组1用代入法解方程组: 【思路点拨】比较两个方程未知数的系数,发现中x的系数较小,所以先把方程中x用y表示出来,代入,这样会使计算比较简便【答案与解析】解:由得 将代入 ,解得将代入,得x3所以原方程组的解为【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”举一反三:【变式】m 取什么数值时,方程组的解 (1)是正数;(2)是正整数?并求它的所有正整数解. 【答案】(1)m 是大于-4 的数时,原方程组的解为正数; (2)m=-3,-2,0,.2.“整体代入”解方程组:【答案与解析】解:由,得 .将代入,得,解得.把代入,得.所以原方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算举一反三:【高清课堂:二元一次方程组的解法369939 例7(1)】【变式1】解方程组【答案】解: 将代入:, 得 y=4,将y=4代入:2x12=2 得 x=7,原方程组的解是.【高清课堂:二元一次方程组的解法369939 例7(2)】(2)解:由,设x=4,y=3 代入:443=5 412=5 8=5 ,原方程组的解为.类型二、方程组解的应用3. 已知关于x,y的方程组的解满足方程3x+2y19,求m的值【思路点拨】要求m就必须设法建立关于m的方程,因此,应先求出方程组的解,然后将所求出的解代入3x+2y19中,问题便可解决【答案与解析】解:由得: 将代入,解得 将代入,解得 所以原方程组的解为把方程组的解代入方程3x+2y19中,得37m+2(-m)19,所以m1【总结升华】本题也可以看作三元一次方程组的问题来解决4.已知和方程组的解相同,求的值【思路点拨】两个方程组有相同的解,这个解是2x+5y-6和3x-5y16的解由于这两个方程的系数都已知,故可联立在一起,求出x、y的值再将x、y的值代入ax-by-4,bx+ay-8中建立关于a、b的方程组即可求出a、b的值【答案与解析】解:依题意联立方程组+得5x10,解得x2把x2代入得:22+5y-6,解得y-2,所以,又联立方程组,则有,解得 所以(2a+b)2011-1【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小华同时解方程组,小明看错了m,解得小华看错了n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自动化销售预测创新创业项目商业计划书
- 电商数据加密系统创新创业项目商业计划书
- 海外汽车设计工作室探访创新创业项目商业计划书
- 海外汽车市场动态创新创业项目商业计划书
- 2025年甘肃培黎职业学院招聘考试笔试试题(含答案)
- 自动化医学影像分析创新创业项目商业计划书
- 2025年游戏化营销助力餐饮品牌传播:案例分析与效果评估报告
- 2025年新能源微电网在能源互联网中的稳定性风险评估报告
- 2025年职业教育创新模式深度分析报告
- 辽宁省大连市庄河高级中学2026届高一化学第一学期期中联考模拟试题含解析
- 设备开停机管理制度
- 2025至2030中国水利信息系统行业发展趋势分析与未来投资战略咨询研究报告
- 2025年4月自考15044马克思主义基本原理概论试题及答案含解析
- 数字证据取证技术-洞察及研究
- (2025)公共基础知识真题库和答案
- 电机学模拟习题(含答案解析)
- 餐饮区域保护合同范本
- 医院药物使用流程及监控机制
- 绿化工程挂靠合同协议
- 2025年消防设施操作员(中级)职业技能鉴定参考试题库(500题含答案)
- 2025年交管12123驾驶证学法减分题库(含答案)
评论
0/150
提交评论