



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第63课 椭圆的几何性质(2)1. 判断直线与椭圆位置关系:联立直线方程与椭圆方程,消元得出关于 (或)的一元二次方程,当时,直线与椭圆相交;当时,直线与椭圆相切;当时,直线与椭圆相离2.直线被椭圆截得的弦长公式:设直线与椭圆的交点坐标为,则 其中为直线斜率【例1】已知椭圆与直线:有两个不同的交点与(1)求实数的取值范围(2)若,求直线的方程【解析】(1)由,得椭圆与直线有两个不同的交点,解得(2)设,则, ,解得所以直线的方程为或【变式】已知椭圆及直线:(1)若椭圆与直线相切,求实数的值(2)求椭圆上的点到直线:的距离的最小值与最小值【解析】(1)设直线:,由,得,解得(2)当时,直线与椭圆的交点到直线的距离的最近,直线与直线的距离为 当时,直线与椭圆的交点到直线的距离的最远,直线与直线的距离为 所以,椭圆上的点到直线的距离的最小值为,最大值为(2)方法2.设为椭圆上一点,那么点到直线的距离为:当时,;当时,.所以,椭圆上的点到直线的距离的最小值为,最大值为 【例2】已知实数,满足 ,求:的最大值与最小值【解析】,且当时,取得最小值;当时,取得最大值.第63课 椭圆的几何性质的课后作业(2)1设是椭圆的离心率,且,则实数的取值范围是()ab. c d【解析】当k4时,c,由条件知;当0k4时,c,由条件知1,解得0k3.故选c.【答案】c2. “”是“方程”表示焦点在y轴上的椭圆”的( ) a.充分而不必要条件 b.必要而不充分条件 c.充要条件 d.既不充分也不必要条件 解析:选c 将方程转化为 , 根据椭圆的定义,要使焦点在y轴上必须满足所以,故选c.3. 椭圆的左、右顶点分别是,左、右焦点分别是,。若成等比数列,则此椭圆的离心率为( )a. b. c. d. 【答案】b【解析】成等比数列,即,4. 设,是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为 ()a. b. c. d.【解析】选c 由题意可得|pf2|f1f2|,acc,3a4c,e.5. 从椭圆上一点向轴作垂线,垂足恰为左焦点,是椭圆与轴正半轴的交点,是椭圆与轴正半轴的交点,且 (是坐标原点),则该椭圆的离心率是 ()a. b. c. d.【解析】选c本题主要考查椭圆的简单几何性质,意在考查曲线和方程这一解析几何的基本思想由已知,点p(c,y)在椭圆上,代入椭圆方程,得p.abop,kabkop,即,则bc,a2b2c22c2,则,即该椭圆的离心率是.6.已知点和点分别为椭圆的中心和左焦点,点为椭圆上的任意一点,求的最大值与最小值【解析】 由题意,f(-1,0),设点p,则有,解得,因为,所以=因为,所以当时,取得最小值;当时,取得最大值.7. 已知椭圆,直线: (1)若与椭圆有一个公共点,求的值;(2)若与椭圆相交于,两点,且等于椭圆的短轴长,求的值(3)求椭圆上的点到直线的距离的最小值与最小值【解析】(1)由消去,得,所以。(2)设,由(1)知:,. 解得:.(3)由(1)知,当时,直线与椭圆的交点到直线的距离的最近 ;当时,直线与椭圆的交点到直线的距离的最远 8. 已知过点作直线交椭圆于、两点, 并且点为线段的中点,求直线的方程【解析】法1.当直线的斜率不存在时,直线,不满足条件;当直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监督法考试题目及答案
- 华夏银行重庆市巴南区2025秋招笔试创新题型专练及答案
- 招商银行惠州市惠城区2025秋招结构化面试经典题及参考答案
- 农发行三门峡市灵宝市2025秋招无领导小组面试案例库
- 民生银行宿迁市沭阳县2025秋招金融科技岗笔试题及答案
- 松阳县2025浙江丽水市松阳县疾病预防控制中心公开招聘驾驶员及考察公笔试历年参考题库附带答案详解
- 2025年执业药师之《西药学专业二》经典例题【全优】附答案详解
- 共享电动车安全保障制度
- 数码印刷技术应用手册
- 公司开户流程规定
- 《矿山压力与岩层控制》教案
- 图书馆外墙装饰与修复方案
- DB11∕T 894.1-2012 地下管线信息分类、交换、共享技术规范 第1部分:数据分类与定义
- 初中英语1900词汇按词性分类
- 《道路交通安全违法行为记分管理办法》知识专题培训
- 《法制教育守护成长》主题班会
- 《旅游研究方法课程》-课程教学大纲
- 裂纹损伤容限评估技术
- 居民公约工作总结
- 大学研究生录取分析报告
- 骨科疾病的深度学习研究
评论
0/150
提交评论