已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 等于 a 1 ib 1 ic id i由已知得 b 选b 2 已知复数z的模为2 则 z i 的最大值为 a 1b 2c d 3 d 应用复数的几何意义 易知 zm i 为最大 其值为3 故选d 易错点 1 用特例代替一般 令z 2 得 2 i 误选c 2 应用复数模不等式 将最小值误为最大值 由 z i z i 2 1 1而错选a 3 采用复数的代数式求解时 由于对常见的一些条件极值问题的求解方法没有掌握 无法获得最大值 3 若i是虚数单位 则满足 p qi 2 q pi的实数p q一共有 a 1对b 2对c 3对d 4对 d 由 p qi 2 q pi得 p2 q2 2pqi q pi 所p2 q2 q2pq pp 0q 0易错点 本题较容易出现漏解的现象 以 解得 或 或 p 0 q 1 或 4 在复平面内 向量对应的复数是2 i 向量对应的复数是 1 3i 则向量对应的复数为 1 3i 2 i 3 4i 5 设x y均为实数 若x y 4 x y 2 i 则x y x y 4 0 x y 2 0 3 4i 依题意 解得 x 1y 3 1 3 1 掌握好复数的基本概念及形如a bi a b r 的复数表示实数 虚数 纯虚数的充要条件 要注意a bi表示纯虚数时 不要忽略b 0的条件 2 熟练掌握复数代数形式的四则运算法则 对于乘法可用二项式定理展开 3 了解复数及其加减运算的几何意义 重点突破 虚数单位i的概念下列说法中 正确的是 a i b i 或i c i是 1的一个平方根d i是 1的算术平方根解决本题的关键是对i的理解 在实数集中是没有意义的 这种表达是错误的 c 由x2 1就说x 是没有意义的 从i的概念来理解i i就是 1的一个平方根 故选c 学习一个新概念或新的数学符号时 应注意先了解这概念或符号的确切意义 不可随意把旧概念或符号中的有关说法或法则不做研究照搬过来 下列说法中 错误的是 a 1有两个平方根 b 1有两个平方根 ic i是方程x2 1的一个根d 方程x2 4有两个根 2i a 重点突破 复数的相关概念当实数m为何值时 z lg m2 2m 2 m2 3m 2 i 为纯虚数 为实数 对应的点在复平面内的第二象限内 可根据复数的有关概念 先将所给的复数转化为实部与虚部分别满足的条件去解 lg m2 2m 2 0m2 3m 2 0解得m 3 m2 2m 2 0m2 3m 2 0 解得m 1或m 2 若z的对应点在第二象限 则lg m2 2m 2 0 解得 1 m 1 或1 m 3 若z为纯虚数 则 若z为实数 则 所以 m 3时 z为纯虚数 m 1或m 2时 z为实数 1 m 1 或1 m 3时z的对应点在第二象限 这里应用的是复数相等的条件 在解决复数的值的相关运算时 进行实部与虚部的分离是解题的基本方法 当实数x为何值时 复数z x2 x 2 x2 3x 10 i是 虚数 纯虚数 正实数 z为虚数 则其虚部系数不得为零 故有x2 3x 10 0 所以x 2且x 5 x2 x 2 0 x2 3x 10 0 x2 3x 10 0 x2 x 2 0 所以x 1 z为纯虚数 则 则x 5 z为正实数 则 重点突破 复数相等的充要条件设关于x的方程是x2 tan i x 2 i 0 若方程有实数根 求锐角 的实数根 证明 对任意 k k z 方程无纯虚数根 在复数范围内解方程 一般会引入复数x yi 并在解题时注意实部与虚部的系数均为实数 设实数根是a 则a2 tan i a 2 i 0 即a2 atan 2 a 1 i 0 a2 atan 2 0a 1 0 所以a 1 且tan 1 又0 所以 因为a tan r 所以 若方程存在纯虚数根 设为bi b r b 0 b2 b 2 0btan 1 0此方程组没有实数解 故对任意 k z 方程无纯虚数根 利用复数相等来实现复数问题向实数问题的转化是解决此类问题的基本方法 则 bi 2 tan i bi 2 i 0 即 已知关于x的方程x2 1 2i x 3m i 0有实根 则实数m满足 a m b m c m d m 设实根为x0 则 即 解得 选d 2x0 1 0 d 已知 z 5 且 3 4i z是纯虚数 则z 由于 3 4i z是纯虚数 直接将整体设为bi b 0 令 3 4i z bi 取模得5 z b 所以b 25 则所以z 4 3i或z 4 3i 本题也可以设z a bi 但运算要大一些 注意观察 巧妙设元可以简化解题过程 z 4 3i或z 4 3i 1 复数是中学阶段关于数的概念的最后一次扩充 随着视野的扩大 出现了一些新概念 新算法和新结论 由于实数集是复数集的子集 因而在实数中已经熟悉的算法和结论很容易 移植 到复数中来 然而不加区分地盲目 移植 会导致错误 所以 弄清实数集与复数集之间的区别与联系是十分必要的 2 对于复数概念的理解 要抓住复数的分类 掌握一个复数为实数 虚数 纯虚数的充要条件 两个复数相等的充要条件 两个复数互为共轭复数的充要条件 明确复数问题实数化是解决复数问题的最基本的思想方法 3 两个复数不全是实数 就不能比较大小 只有相等与不相等关系 4 在复数向量表示中 要注意复平面与一般坐标平面的区别 1 2009 浙江卷 设z 1 i i是虚数单位 则 a 1 ib 1 ic 1 id 1 i选d 本小题主要考查了复数的运算和复数的概念 以复数的运算为载体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗卫生行业廉政教育测试题及答案集
- 毕业论文指导人评语大全
- 初中议论文作文范文5
- 2025年电子游戏文化传播项目可行性研究报告及总结分析
- 2025年城市雨水管理系统项目可行性研究报告及总结分析
- 略论基督教文化中的内在矛盾
- 2025年未来物流技术与商业模式创新可行性研究报告及总结分析
- 不良事件原因分析图鱼骨图
- 浅谈山水画创作之感
- 初中人生价值议论文作文5
- 习题课件:等腰三角形中的分类讨论思想
- 无人履带车辆的鲁棒轨迹跟踪控制研究
- 2025年 石家庄市市属国有企业招聘笔试考试试卷附答案
- 2025及未来5年中国丙烯醇市场分析及数据监测研究报告
- STEAM背景下小学劳动课程设计
- Y染色体微缺失机制-第2篇-洞察与解读
- 电气应急知识培训内容课件
- 2025年中级电工证考试题库(附答案)
- 植物病虫草鼠害诊断与防治基础第一章植物害虫郭二庆
- 2025年国家开放大学《统计学》期末考试备考试题及答案解析
- 大学课件李商隐
评论
0/150
提交评论