全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学史上的三大几何问题一、 立方倍积关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗, 使他们都又惊奇又惧怕。结果被一个学者指出了错误:稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。人们困扰地再去问神,这次神回答说:你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。而由于这一个传说,立方倍积问题也就被称为提洛斯问题。数学史上的三大几何问题二、 化圆为方方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2r,面积是r2。由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2r及半径r,则这三角形的面积就是(1/2)(2r)(r)=r2与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方根。我们假设圆的半径为单位1,那么正方形的边长就是根号。直到1882年,化圆为方的问题才最终有了合理的答案。德国数学家林德曼(Lindemann,18521939)在这一年成功地证明了圆周率=3.1415926.是超越数,并且尺规作图是不可能作出超越数来,所以用尺规作图的方式解决化圆为方的问题才被证明是不可能实现的。 数学史上的三大几何问题三、 三等分角三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来。但无疑地它的出现是很自然的,纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分。二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了。直到1830年,18岁的法国数学家伽罗华首创了后来被命名为“伽罗华理论” 理论,该理论能够证明倍立方积和三等分角问题都是尺规作图不能做
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年漳州市龙文区教师招聘参考题库及答案解析
- 小儿白血病常见症状及护理指南
- 2025年渝中区北碚区中小学教师招聘笔试参考题库及答案解析
- 尿毒症饮水宣教
- 小学生介绍运动
- 卫生院请假与销假
- 世界家庭医生日活动资料
- 2025-2026学年北师大版生物七年级上册2.3.1细胞通过分裂而增殖教案
- 2025年税务师考试(税法二)模拟卷后附答案
- 兴安市重点中学2025-2026学年高一上数学期末学业质量监测试题含解析
- 2025年公务员时事政治试题库(含答案+解析)
- 五矿集团考试题及答案
- 母婴护理师(月嫂)理论知识测试题(含答案)
- 八上第4章第2节生活中的水溶液1
- 八宝粥的煮法
- 河南科技大学《模拟电子技术》2025年学年期末试卷及答案
- 睡眠呼吸暂停综合征护理措施
- 专用车辆采购方案投标文件(技术方案)
- 第21课《小圣施威降大圣》课件-2025-2026学年统编版语文七年级上册
- 2025-2026学年高一化学上学期第三次月考卷【测试范围:1~3章】(人教版必修第一册)(考试版A4)
- 解读(2025年版)输卵管积水造影诊断中国专家共识
评论
0/150
提交评论