2.1.2指数函数及其性质.ppt_第1页
2.1.2指数函数及其性质.ppt_第2页
2.1.2指数函数及其性质.ppt_第3页
2.1.2指数函数及其性质.ppt_第4页
2.1.2指数函数及其性质.ppt_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 1 2指数函数及其性质 1 芜湖市徽文中学王坤 引入 问题 问题1 某种细胞分裂时 由1个分裂成2个 2个分裂成4个 以此类推 1个这样的细胞分裂x次后 得到的细胞个数y与x的函数关系式是什么 21 22 23 24 研究 引入 问题2 庄子 天下篇 中写道 一尺之棰 日取其半 万世不竭 请你写出截取x次后 木棰剩余量y关于x的函数关系式 问题 研究 提炼 我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数函数 指数函数的特征 提示 依据指数函数y ax a 0且a 1 解析式的结构特征 底数 大于零且不等于1的常数 指数 自变量x 系数 1 只有一项ax 小结 下列函数中 哪些是指数函数 练习 底数 大于零且不等于1的常数 指数 自变量x 系数 1 只有一项ax 2 函数y a2 3a 3 ax是指数函数 求a的值 a 2 d 完成预学案p35问题1 完成固学案p18题2 1 若 则当x 0时 当x 0时 无意义 2 若 在实数范围内函数值不存在 探究2 函数是指数函数吗 有些函数貌似指数函数 实际上却不是 指数函数的解析式中 的系数是1 有些函数看起来不像指数函数 实际上却是 设问2 已知函数的解析式 怎么得到函数的图象 一般用什么方法 列表 描点 连线作图 在同一直角坐标系画出 的图象 并观察 两个函数的图象有什么关系 观察 两个函数的图象有什么关系 y 2x 两个函数图像关于y轴对称 指数函数在底数及这两种情况下的图象和性质 r 0 1 过定点 0 1 即x 0时 y 1 2 在r上是减函数 3 在r上是增函数 归纳 定义域 值域 1 指数函数的图象和性质 例 求下列函数的定义域 值域 函数的定义域为 x x 0 值域为 y y 0 且y 1 解 1 2 函数的定义域为 性质 0 a 1 a 1 1 定义域为r 值域为 0 2 过定点 0 1 即x 0时 y 1 3 在r上是增函数 3 在r上是减函数 4 当x 0时 y 1 当x 0时 0 y 1 4 当x 0时 01 5 既不是奇函数也不是偶函数 图象 0 1 y 1 完成课本p58题2 p59题5 2 指数函数的图象和性质 练习 y ax a 0且a 1 图象必过点 2y ax 2 a 0且a 1 图象必过点 y ax 3 1 a 0且a 1 图象必过点 0 1 2 1 3 0 4某种细菌在培养过程中 每20分钟分裂一次 一个分裂成两个 经过3小时这种细菌由一个分裂成 个 512 性质 0 a 1 a 1 1 定义域为r 值域为 0 2 过定点 0 1 即x 0时 y 1 3 在r上是增函数 3 在r上是减函数 4 当x 0时 y 1 当x 0时 0 y 1 4 当x 0时 01 5 既不是奇函数也不是偶函数 图象 0 1 y 1 完成预学案p35问题2 完成固学案p18题3 求定点 先令指数为0 再计算x y的值 已知指数函数的图像经过点求的值 例6 先看课本p56 57的解答过程 再完成预学案p36问题1 待定系数法求a 2 指数函数的图象和性质 性质 0 a 1 a 1 1 定义域为r 值域为 0 2 过定点 0 1 即x 0时 y 1 3 在r上是增函数 3 在r上是减函数 4 当x 0时 y 1 当x 0时 0 y 1 4 当x 0时 01 5 既不是奇函数也不是偶函数 图象 0 1 y 1 1 考察指数函数y 1 5x 由于底数1 5 1 所以指数函数y 1 5x在r上是增函数 解 2 5 3 2 1 52 5 1 53 2 2 指数函数y 0 5x在r上是减函数 1 2 1 5 0 5 1 2 0 5 1 5 3 由指数函数的性质知1 50 3 1 50 1 0 81 2 0 80 1 1 50 3 0 81 2 1 指数函数y 1 5x在r上是增函数 利用函数的单调性比较大小 完成课本p59题7 1 2 搭桥法 与中间变量0 1比较大小 方法总结 1 对同底数幂大小的比较用的是指数函数的单调性 必须要明确所给的两个值是哪个指数函数的两个函数值 2 对不同底数幂的大小的比较可以与中间值进行比较 1 已知a 0 80 7 b 0 80 9 c 1 20 8 按大小顺序排列a b c 答案 c a b b a 1 c 1 即b a 1 c 对不同底数幂的大小的比较可以与中间值进行比较 对同底数幂大小的比较用的是指数函数的单调性 答案 分a 1和01时a3a4 2 比较a3与a4的大小 1 a b c a b c 对同指数幂比较底数的大小可设指数为1 1 b a c b a c 完成预学案p38问题1 当指数函数底数大于1时 图象上升 且底数越大时图象向上越靠近于y轴 当底数大于0小于1时 图象下降 底数越小图象向右越靠近于x轴 0 c d 1 a b 比较a b c d的大小 指数函数图象及性质 1 指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系如图所示 则0 c d 1 a b 在y轴右侧 图象从上到下相应的底数由大变小 指数函数在第一象限底大图高 在y轴左侧 图象从下到上相应的底数由大变小 既无论在y轴的左侧还是右侧 底数按逆时针方向变大 比较下列各题中两个值的大小 变式 对同指数幂不同底数的大小比较可用作商法 2 指数函数的图象和性质 练习 1 0 1 0 1 性质 0 a 1 a 1 1 定义域为r 值域为 0 2 过定点 0 1 即x 0时 y 1 3 在r上是增函数 3 在r上是减函数 4 当x 0时 y 1 当x 0时 0 y 1 4 当x 0时 01 5 既不是奇函数也不是偶函数 图象 0 1 y 1 完成预学案p35问题3p38检测题2 0 x y 1 完成预学案p36检测题1 选d 1 完成预学案p36拓展问题1 选c 完成预学案p36检测题2 解析 分a 1和01时a 1 3a 2当0 a 1时1 a 3a 2 答案 2 完成预学案p36问题2 解析 分a 1和01时或a 0 舍去 当0 a 1时或a 0 舍去 答案 完成课本p60b组题4 完成预学案p38拓展问题1 高一数学测试 5 题14 高一数学测试 5 题15 易知其图象顶点的横坐标为 所以函数的最小值为 高一数学测试 5 题15 在上是减函数 完成预学案p38问题2 要利用复合函数的单调性来求解 什么是复合函数 复合函数 注意 若y f u 定义域为a u g x 值域为b 则必须满足b a 如果y是u的函数 而u又是x的函数 即y f u u g x 那么y关于x的函数y f g x 叫做函数f和g的复合函数 u叫做中间变量 复合函数的单调性 规律 当内外函数的单调性相同时 其复合函数是增函数 当内外函数的单调性不相同时 其复合函数是减函数 同增异减 增函数 增函数 减函数 减函数 异 同 指内外函数单调性的异同 完成预学案p38问题2 的定义域均为r 完成固学案p18题5 p19题6 7 完成固学案p19题4 完成固学案p19题4 例 求函数的单调性 解 设 f u 和u x 的定义域均为r因为 u x 在上递减 在上递增 而在r上是减函数 所以 在上是增函数 在上是减函数 完成预学案p36拓展问题1 作业 2 完成预学案p36检测题3 1 完成课本p60b组题1 点滴收获 本节课学习了那些知识 指数函数的定义 指数函数的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论