广东高考文科数学真题分类汇总-圆锥曲线(含答案).doc_第1页
广东高考文科数学真题分类汇总-圆锥曲线(含答案).doc_第2页
广东高考文科数学真题分类汇总-圆锥曲线(含答案).doc_第3页
广东高考文科数学真题分类汇总-圆锥曲线(含答案).doc_第4页
广东高考文科数学真题分类汇总-圆锥曲线(含答案).doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2007-2013广东高考文科数学真题分类汇总-圆锥曲线7(2013广东文)垂直于直线且与圆相切于第一象限的直线方程是( A) A B C D9(2013广东文)已知中心在原点的椭圆C的右焦点为,离心率等于,则C的方程是( D)A B C D20(2013广东文)(本小题满分14分)已知抛物线的顶点为原点,其焦点到直线的距离为设为直线上的点,过点作抛物线的两条切线,其中为切点(1) 求抛物线的方程;(2) 当点为直线上的定点时,求直线的方程;(3) 当点在直线上移动时,求的最小值20. 解:(1)依题意,解得(负根舍去)抛物线的方程为;(2)设点,,由,即得. 抛物线在点处的切线的方程为,即. , .点在切线上, . 同理, . 综合、得,点的坐标都满足方程 . 经过两点的直线是唯一的,直线 的方程为,即;(3)由抛物线的定义可知,所以联立,消去得, 当时,取得最小值为 8(2012广东文)在平面直角坐标系中,直线与圆相交于、两点,则弦的长等于 (B) A B C D 20(2012广东文) (本小题满分14分)在平面直角坐标系中,已知椭圆的左焦点为,且点在上(1) 求椭圆的方程;(2) 设直线与椭圆和抛物线相切,求直线的方程解:(1):依题意:c=1,1分则:,2分设椭圆方程为:3分将点坐标代入,解得:4分所以 故椭圆方程为:5分(2)设所求切线的方程为:6分消除y7分化简得:8分同理:联立直线方程和抛物线的方程得:消除y得: 9分化简得: 10分将代入解得:解得:12分故切线方程为:14分8(2011广东文)设圆C与圆x2+(y-3)2=1外切,与直线y =0相切,则C的圆心轨迹为(D)A抛物线 B双曲线 C椭圆 D圆21(2011广东文)(本小题满分14分)在平面直角坐标系中,直线交轴于点A,设是上一点,M是线段OP的垂直平分线上一点,且满足MPO=AOP(1)当点P在上运动时,求点M的轨迹E的方程;(2)已知T(1,-1),设H是E 上动点,求+的最小值,并给出此时点H的坐标;(3)过点T(1,-1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线的斜率k的取值范围。解:(1)如图1,设MQ为线段OP的垂直平分线,交OP于点Q,因此即另一种情况,见图2(即点M和A位于直线OP的同侧)。MQ为线段OP的垂直平分线,又因此M在轴上,此时,记M的坐标为为分析的变化范围,设为上任意点由 (即)得,故的轨迹方程为综合和得,点M轨迹E的方程为(2)由(1)知,轨迹E的方程由下面E1和E2两部分组成(见图3):;当时,过作垂直于的直线,垂足为,交E1于。再过H作垂直于的直线,交因此,(抛物线的性质)。(该等号仅当重合(或H与D重合)时取得)。当时,则综合可得,|HO|+|HT|的最小值为3,且此时点H的坐标为 (3)由图3知,直线的斜率不可能为零。设故的方程得:因判别式所以与E中的E1有且仅有两个不同的交点。又由E2和的方程可知,若与E2有交点,则此交点的坐标为有唯一交点,从而表三个不同的交点。因此,直线的取值范围是6(2010广东文)若圆心在轴上、半径为的圆位于轴左侧,且与直线相切,则圆的方程是( D ) o*m A B C D7(2010广东文)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( B ) A B C D21(2010广东文).(本小题满分14分)w_w w. k#s5_u.c o*m已知曲线,点是曲线上的点(n=1,2,).(1)试写出曲线在点处的切线的方程,并求出与轴的交点的坐标;(2)若原点到的距离与线段的长度之比取得最大值,试求点的坐标;w_w*w.k_s_5 u.c*o*m(3)设与为两个给定的不同的正整数,与是满足(2)中条件的点的坐标,证明:21解:(1),设切线的斜率为,则 曲线在点处的切线的方程为:又点在曲线上, 曲线在点处的切线的方程为:即令得,曲线在轴上的交点的坐标为(2)原点到直线的距离与线段的长度之比为: 当且仅当即时,取等号。此时,故点的坐标为(3)证法一:要证只要证只要证,又所以:证法二:由上知,只需证,又,故只需证,可用数学归纳法证明之(略).13(2009广东文)以点(2,)为圆心且与直线相切的圆的方程是 .19(2009广东文).(本小题满分14分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积(3)问是否存在圆包围椭圆G?请说明理由.19.【解析】(1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:.(2 )点的坐标为 (3)若,由可知点(6,0)在圆外, 若,由可知点(-6,0)在圆外; 不论K为何值圆都不能包围椭圆G.6(2008广东文)经过圆的圆心,且与直线垂直的直线方程是( C )ABCD 20(2008广东文)(本小题满分14分)设,椭圆方程为,抛物线方程为如图6所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)AyxOBGFF1图620解:(1)由得当时,点的坐标为,过点的切线方程为,即,令得,点的坐标为;由椭圆方程得点的坐标为, ,即,因此所求的椭圆方程及抛物线方程分别为和(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,同理以为直角的只有一个;若以为直角,设点的坐标为,则坐标分别为由得,关于的一元二次方程有一解,有二解,即以为直角的有二个;因此抛物线上共存在4个点使为直角三角形11(2007广东文)在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是 【解析】设所求抛物线方程为,依题意,故所求为.19(2007广东文)(本小题满分14分) 在平面直角坐标系xOy巾,已知圆心在第二象限、半径为的圆C与直线相切于坐标原点0椭圆与圆c的一个交点到椭圆两焦点的距离之和为10 (1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长若存在,请求出点Q的坐标;若不存在,请说明理由.【解析】(1)设圆的方程为2分 依题意,5分 解得,故所求圆的方程为7分 (注:此问若结合图形加以分析会大大降低运算量!) (2)由椭圆的第一定义可得,故椭圆方程为,焦点9分 设,依题意, 11分 解得或(舍去) 13分 存在14分还来不及享受美丽的锦瑟华年,就已经到了白发迟暮,一生匆匆而过。生命,就是这样匆匆,还来不及细细品味,就只剩下了回忆。生命匆匆,累了就选择放下,别让自己煎熬痛苦,别让自己不堪重负。放下该放下的,心才会释放重负,人生才能安然自如。人生就是一个口袋,里面装的东西越多,前行的脚步就越沉重。总觉得该得到的还没有得到,该拥有的却已经失去,苦苦追寻的依然渺茫无踪。心累,有时候是为了生存,有时候是为了攀比。只有放下羁绊前行脚步的重担,放下阴霾缭绕的负面情绪,才能感受到“柳暗花明又一村”的豁然开朗,领悟到“一蓑烟雨任平生”的超然物外。人生太匆匆,累了,就放一放吧,何苦要执拗于一时的成败得失!很多时候,我们用汗水滋养梦想,可是,梦想是丰满的,现实是骨感的。每个人都渴望成功的鲜花围绕自己,可是,谁都不是常胜将军,都会猝不及防地遭遇人生的滑铁卢。唉声叹气只会让自己裹足不前,一蹶不振只能让自己沉沦堕落。如果真的不能承受其重,就放一放,重新审视前方的道路,选择更适合自己的方向。有些东西,本就如同天上的浮云,即使竭尽全力,也未必能揽之入怀。或者即使得到,也未必能提高幸福指数。所以与其为得不到的东西惶惶终日,不如选择放下,为心减负,轻松前行。一人难如百人愿 ,不是所有的人,都会欣赏和喜欢自己。所以,我们不必曲意逢迎他人的目光,不用祈求得到所有人的温柔以待。真正在意你的人,不会对你无情无义,不在意你的人,你不过是轻若鸿毛的可有可无。做最好的自己,静静地守着一江春水的日子,让心云淡风轻,怡然自若。人生本过客,何必千千结。不是所有的相识都能地久天长,不是所有的情谊都能地老天荒。有些人终究是走着走着就散了,成为我们生命中的过客。爱过,恨过,都会装点我们原本苍白的人生,感谢曾经在我们生命中出现过的人。如果无缘继续红尘相伴,就选择放下吧,给自己和对方都留一段美好的回忆和前行的空间。鱼总是自由自在地在水中快乐游弋,是因为鱼只有七秒钟的记忆,只在一瞬间,鱼便忘记了所有的不愉快。所以,忘记所有的不愉快,才能为美好的情绪留出空间,才能让心情灿然绽放。林清玄说:一尘不染不是不再有尘埃,而是尘埃让它飞扬,我自做我的阳光。是呀,世事喧嚣纷扰,放下纷扰,做一个阳光快乐的人,做自己快乐的主人!还来不及享受美丽的锦瑟华年,就已经到了白发迟暮,一生匆匆而过。生命,就是这样匆匆,还来不及细细品味,就只剩下了回忆。生命匆匆,累了就选择放下,别让自己煎熬痛苦,别让自己不堪重负。放下该放下的,心才会释放重负,人生才能安然自如。人生就是一个口袋,里面装的东西越多,前行的脚步就越沉重。总觉得该得到的还没有得到,该拥有的却已经失去,苦苦追寻的依然渺茫无踪。心累,有时候是为了生存,有时候是为了攀比。只有放下羁绊前行脚步的重担,放下阴霾缭绕的负面情绪,才能感受到“柳暗花明又一村”的豁然开朗,领悟到“一蓑烟雨任平生”的超然物外。人生太匆匆,累了,就放一放吧,何苦要执拗于一时的成败得失!很多时候,我们用汗水滋养梦想,可是,梦想是丰满的,现实是骨感的。每个人都渴望成功的鲜花围绕自己,可是,谁都不是常胜将军,都会猝不及防地遭遇人生的滑铁卢。唉声叹气只会让自己裹足不前,一蹶不振只能让自己沉沦堕落。如果真的不能承受其重,就放一放,重新审视前方的道路,选择更适合自己的方向。有些东西,本就如同天上的浮云,即使竭尽全力,也未必能揽之入怀。或者即使得到,也未必能提高幸福指数。所以与其为得不到的东西惶惶终日,不如选择放下,为心减负,轻松前行。一人难如百人愿 ,不是所有的人,都会欣赏和喜欢自己。所以,我们不必曲意逢迎他人的目光,不用祈求得到所有人的温柔以待。真正在意你的人,不会对你无情无义,不在意你的人,你不过是轻若鸿毛的可有可无。做最好的自己,静静地守着一江春水的日子,让心云淡风轻,怡然自若。人生本过客,何必千千结。不是所有的相识都能地久天长,不是所有的情谊都能地老天荒。有些人终究是走着走着就散了,成为我们生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论