




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 1 2空间中直线与直线之间的位置关系 新课标实验教材 人教版 复习引入 新课讲解 例题选讲 课堂练习 课堂小结 复习与准备 平面内两条直线的位置关系 相交直线 有一个公共点 平行直线 无公共点 两路相交 立交桥 立交桥中 两条路线ab cd 既不平行 又不相交 next back 六角螺母 next back a与b是相交直线 a与b是平行直线 a与b是异面直线 答 不一定 它们可能异面 可能相交 也可能平行 分别在两个平面内的两条直线是否一定异面 合作探究一 next back 练习1 在教室里找出几对异面直线的例子 next back 两直线异面的判别二 两条直线不同在任何一个平面内 两直线异面的判别一 两条直线既不相交 又不平行 注1 1 异面直线的定义 注意 在不同平面内的两条直线不一定异面 按平面基本性质分 同在一个平面内 相交直线 平行直线 不同在任何一个平面内 异面直线 有一个公共点 按公共点个数分 相交直线 无公共点 平行直线 异面直线 next back 2 1 2空间中直线与直线之间的位置关系 2 异面直线的画法 说明 画异面直线时 为了体现它们不共面的特点 常借助一个或两个平面来衬托 如图 1 3 2 next back 合作探究二 如图是一个正方体的展开图 如果将它还原为正方体 那么ab cd ef gh这四条线段所在直线是异面直线的有对 答 共有三对 next back 我们知道 在同一平面内 如果两条直线都和第三条直线平行 那么这两条直线互相平行 在空间这一规律是否还成立呢 观察 将一张纸如图进行折叠 则各折痕及边a b c d e 之间有何关系 a b c d e 公理 在空间平行于同一条直线的两条直线互相平行 平行线的传递性 next back 推广 在空间平行于一条已知直线的所有直线都互相平行 在平面内 我们可以证明 如果一个角的两边与另一个角的两边分别平行 那么这两个角相等或互补 空间中这一结论是否仍然成立呢 定理 等角定理 空间中 如果两个角的两边分别对应平行 那么这两个角相等或互补 观察 如图所示 长方体abcd a1b1c1d1中 adc与 a1d1c1 adc与 a1b1c1两边分别对应平行 这两组角的大小关系如何 next back 3 异面直线所成的角 在平面内 两条直线相交成四个角 其中不大于90度的角称为它们的夹角 用以刻画两直线的错开程度 如图 在空间 如图所示 正方体abcd efgh中 异面直线ab与hf的错开程度可以怎样来刻画呢 2 问题提出 1 复习回顾 next back 3 解决问题 异面直线所成角的定义 如图 已知两条异面直线a b 经过空间任一点o作直线a a b b则把a 与b 所成的锐角 或直角 叫做异面直线所成的角 或夹角 o 思想方法 平移转化成相交直线所成的角 即化空间图形问题为平面图形问题 思考 这个角的大小与o点的位置有关吗 即o点位置不同时 这一角的大小是否改变 next back next back 思考 这个角的大小与o点的位置有关吗 即o点位置不同时 这一角的大小是否改变 a a a a a a 公理4 解答 如图 设a 与b 相交所成的角为 1 a 与b所成的角为 2 同理b b 1 2 等角定理 答 这个角的大小与o点的位置无关 下图长方体中 平行 相交 异面 点击旋转长方体 bd和fh是直线 ec和bh是直线 bh和dc是直线 2 与棱ab所在直线异面的棱共有条 4 分别是 cg hd gf he 课后思考 这个长方体的棱中共有多少对异面直线 1 说出以下各对线段的位置关系 next back 4 例题选讲 例1 例2 如图 正方体abcd efgh中 o为侧面adhe的中心 求 1 be与cg所成的角 2 fo与bd所成的角 next back 连接ha af 2 连接fh 四边形bfhd为平行四边形 hf bd hfo 或其补角 为异面直线fo与bd所成的角 则ah hf fa afh为等边 next back 如图 已知长方体abcd efgh中 ab ad ae 2 1 求bc和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动与探究 自主创业 选择成功教学设计-2025-2026学年中职思想政治经济政治与社会(第4版)北师大版
- 第六课 家庭成员要和睦说课稿-2025-2026学年小学地方、校本课程辽海版人与社会
- 第10课 扎扎糊糊教学设计-2025-2026学年小学美术赣美版五年级上册-赣美版
- 2024-2025年高中化学 专题3 第3单元 第1课时 共价键说课稿 苏教版选修3
- 小学炊事员聘用合同范例
- 农民技术培训和劳务输出合同
- 农业项目孵化与成果转化合作协议
- 家具配件厂办公楼用电管理办法
- 小区居民与农场合作土地托管协议
- 保护环境的合同书
- 80年血火淬炼此刻亮剑正当时:纪念中国人民抗日战争暨世界反法西斯战争胜利80周年阅兵仪式对初中生的启示-2025-2026学年初中主题班会
- 2025-2026学年西师大版(2024)小学数学一年级上册(全册)教学设计(附目录P227)
- 2025年大型集团财务审计外包服务合同风险防控条款规范
- 2025年国家保安员资格考试复习题库(附答案)
- 辅警考试真题(含答案)
- 新式茶饮基础知识培训课件
- 2025新疆天泽和达水务科技有限公司部分岗位社会招聘28人笔试模拟试题及答案解析
- 巧堆肥劳动课件
- 技术方案评审表-技术选型决策
- 万用表专业培训资料共23张课件
- 启闭机设备安装与调试施工方案
评论
0/150
提交评论