七年级数学下册 6.3 实践与探索教案2 (新版)华东师大版.doc_第1页
七年级数学下册 6.3 实践与探索教案2 (新版)华东师大版.doc_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第六章 一元一次方程6.3.2实践与探索【教学目标】知识与能力使学生理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。过程与方法使学生在自主探索与合作交流的过程中理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。情感态度与价值观 培养学生独立思考的习惯,与合作交流的意识。【教学重点】 工程中的工作量、工作的效率和工作时间的关系。【教学难点】把全部工作量看作“1”。【教学过程】一、知识回顾1一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全 部工作量的多少?2一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成 全部工作量的多少? 3工作量、工作效率、工作时间之间有怎样的关系?二、新知探究让学生阅读教科书第19页中的问题6。分析:1这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么?小刘提出什么问题?已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。小刘提出的问题是:两人合作需要几天完成?2怎样用列方程解决这个问题?本题中的等量关系是什么?等量关系是:师傅做的工作量+徒弟做的工作量1)若设两人合作需要x天完成,那么甲、乙分别做了几天?甲、乙的工作效率是多少?本题中工作总量没有告诉,我们把它看成“1”,那么师傅每天完,徒弟每天完成,根据等量关系可得。 1解得 x2.4(天)3你还能提出什么问题?试试看,并解答这些问题。让学生充分思考,大胆提出问题,互相交流,对于合理的问题,让大家共同解答,对于不合理的问题,让大家探讨为什么不合理?应改为怎样提?4李老师把两位同学的问题,合起来后,已知条件增加了什么?求什么?“徒弟先做1天”,也就是说徒弟比师傅多做1天5要解决本题提出的问题,应先求什么7先要求出师傅与徒弟各完成的工作量是多少?两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系,列方程=1 解方程得 x2师傅完成的工作量为= ,徒弟完成的工作量为= 所以他们两人完成的工作量相同,因此每人各得225元。三、知识梳理1.本节课主要分析了工作问题中工作量、工作效率和工作时间之 间的关系,即 工作量工作效率工作时间工作效率工作时间2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。四、随堂练习一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现 由甲独做10小时;请你提出问题,并加以解答。例如 (1)剩下的乙独做要几

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论