数学人教版九年级上册24.1.2垂直于弦的直径(第一课时).doc_第1页
数学人教版九年级上册24.1.2垂直于弦的直径(第一课时).doc_第2页
数学人教版九年级上册24.1.2垂直于弦的直径(第一课时).doc_第3页
数学人教版九年级上册24.1.2垂直于弦的直径(第一课时).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.1.2 垂直于弦的直径课题垂直于弦的直径(第一课时)备课时间2016-11-20课型新授课上课时间2016-11-23教学目标知识与技能1. 研究圆的对称性,掌握垂径定理及其推论.2. 学会运用垂径定理及其推论解决一些有关证明、计算和作图问题。过程与方法经历探索发现圆的对称性,证明垂径定理及其推论的过程,锻炼学生的思维品质,学习证明的方法。情感态度价值观在学生通过观察、操作、变换和研究的过程中进一步培养学生的思维能力,创新意识和良好的运用数学的习惯和意识。教学重点垂径定理及其推论的发现、记忆与证明。教学难点垂径定理及其推论的运用。教具圆形纸张、圆规、直尺、多媒体课件 教学过程问题与情境师生行为备注与修改创设情境导入新课1. 将你手中的圆沿圆心对折,你会发现圆是一个什么图形?2. 将手中的圆沿直径向上折,你会发现折痕是圆的一条弦,这条弦被直径怎样了?3. 一个残缺的圆形物件,你能找到它的圆心吗?4. 赵州桥是我国古代桥梁史的骄傲,我们能求出主桥拱的半径吗?前两个问题可以由学生动手操作,并观察结果,得到初步结论。后两个问题作为问题情境,激发学生学习兴趣,引导学生进一步的学习。合作交流探究新知1. 圆的对称性(探究)圆是轴对称图形吗?它有几条对称轴?分别是什么?2. 垂径定理(思考)如图 :AB是O的一条弦,作直径CD,使CDAB,垂足E。 这个图形是对称图形吗 你能发现图中有哪些相等的线段和弧?请说明理由。 你能用一句话概括这些结论吗?垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 你能用几何方法证明这些结论吗? 你能用符号语言表达这个结论吗?3垂径定理的推论如上图,若直径CD平分弦AB则 直径CD是否垂直且平分弦所对的两条弧?如何证明? 你能用一句话总结这个结论吗?(即推论:平分弦的直径也垂直于弦,并且平分弦所对的两条弧) 如果弦AB是直径,以上结论还成立吗?圆的对称性由学生发现并总结,教师进行板书。教师循序渐进地将一个个的问题抛出,引导学生一步步地进行思考和总结,师生一起总结垂径定理并板书。学生小组讨论,发现垂径定理的证明方法,并由学生代表发言。学生尝试将文字转变为符号语言,用几何符号表达定理的逻辑关系。教师更正并板书。教师明确定理中的条件和结论,初步理解“知二得三”口诀的含义。教师提出问题,引导学生进行思考和讨论。学生尝试得出垂径定理和推论,教师规范并板书。教师提醒学生此中的弦一定不能是直径。垂径定理的内容比较多,且为考察重点,非一课时所能解决,所以此内容最少需两课时来探究。本节课主要探讨垂径定理及第1条推论,还有它们的应用。而其它推论和更深入的应用,放在下一节课进行研究。灵活应用 提高能力l 简单应用如图,在O中,直径MNAB于C,则下列结论错误的是( )A、 AC=BC B、AN=BN C、OC=CN D、AM=BMl 典型应用如图。在O中弦AB的长为8cm,圆心O到AB的距离OD=3cm,则O的半径为 cm(1) 连结什么可得到一个直角三形?(2) 利用什么知识可以解得半径。(3) 从中你可总结出利用垂径定理计算的什么技巧?l 生活中的应用如图,是赵州桥的几何示意图,若其中AB是桥的跨度为37.4米,桥拱高CD为7.2米,你能求出它所在的圆的主桥拱半径吗?提示:此中直角三角形AOD中只有AD是已知量,但可以通过弦心距、半径、拱高的关系来设未知数,利用勾股定理列出方程。l 利用垂径定理进行的几何证明教材第82练习第2题。简单应用由学生独立完成,教师可让学生自己进行评判.在典型应用中教师可通过问题设置,引导学生联系弦、半径、弦心距或者拱高等因素,从而构成直角三角形,利用勾股定理解决问题。这也是解决计算问题的主要方法,教师一定要重点重申。此题是垂径定理计算题中另一种题型,主要利用将垂径定理、勾股定理、方程的知识进行综合应用。教师在提示后让学生进行小组讨论,然后进行总结,得出结论,让学生做好笔记,养成良好的学习习惯。本节课的应用是基础应用,在下节课中再进行灵活运用和深入应用。小结升华与作业l 小结升华(1) 本节课你学到了哪些数学知识?(2) 在利用垂径定理解决问题时,你掌握了哪些数学方法?(3) 这些方法中你又用到了哪些数学思想?l 作业布置(1)教材82页练习第1题 88页第11题分层作业如图,AB为O的弦,O的半径为5,OCAB于点D,交O于点C,且CDl,则弦AB的长是多少?(2)家庭作业 练习册教师提出问题,学生回顾本节课所学知识,自己进行小结,养成梳理知识的习惯。教学反思 “垂径定理”是圆的重要性质之一,也是全章的基础之一,在整章中占有举足轻重的地位是今后研究圆与其他图形位置关系和数量关系的基础,这些知识在日常生活和生产中有广泛的应用,由于垂径定理及其推论反映了圆的重要性质,是证明线段相等、角相等、垂直关系的重要依据,因此,它是整节书的重点,由于垂径定理的题设和结论都较复杂,因此,理解和证明定理是本节课的难点,在教学中也是一节较难把握的课。在准备垂径定理一节的组内公开课时,我的教案被推翻和自我推翻了3次,试讲了2个班级,每次试讲完,数学组的其它老师都会给我很真实和诚恳的意见,尽管如此,在正式讲课时,仍然不是很顺利,课后我对这节课的讲课过程及我自身进行了深刻的反思。一、注重对学生的培养和教学语言的锤炼 垂径定理这节课要求学生通过老师的引导,用简洁的语言总结出垂径定理的内容,而在平时的讲课过程中我不够注重过对学生总结概念的培养和训练,导致真正讲课时需要学生总结,却总结不出来,而我显然和学生的默契度不够,所以,在引导时,学生不能领会老师的意图。在数学教学中,一些结论的表述是很重要的,而我在这节课上有些引导词不是很到位,需要再努力钻研。今后我将在这方面下工夫,在去听其他数学老师的课时,要注意其他老师在知识点同知识点之间的过渡语句以及教学环节之间的过渡语句。二、注重透彻的剖析一些该让学生知道的知识点,点拨得不够透彻。如不能够用数量关系求的,应该要适当地引导学生设未知数,而不是直接告诉学生这种题目就是要设未知数。 同样在已知一条边,不够条件求解时,也要引导学生利用未知数来解题的这种题目,引导得不够,或者说引导得不够深刻,学生就会觉得是老师直接将知识倒向他,而他不一定能接受。另外,涉及求弦长的问题时,应引导学生先通过构造直角三角形,先求弦长的一半,再利用垂径定理去求弦长。而这些疏忽也与我的教学经验少以及对教材的研究不透彻有很大关系。我将吸取这次讲课的经验教训,多向组内有经验的老师多请教,多研究教材,为下一轮教学做基础。三、注重教学安排在学案设计方面,在时间上把握得不够准确,对学情预估不足,设计的学案内容太多,垂径定理的推论其实可以放在下节课,这样就不会使得后面讲推论的时间太短、太仓促,而这样也可以使前面的练习时间更充裕。在多媒体中练习题量太小,而且题型较单一,可以再多做些找相等的量的基础训练。四、注重常规辅助线及知识的总结这节课还有个作图思想要灌输给学生,即教学生如果见到弦心距、弦,那么直接连半径构成直角三角形;如果就是只知道一条弦,就要连弦心距都要作出来,而我对后一种情形的训练不到位,导致学生在解决铅球问题时,束手无策.五、注重调动学生的学习积极性。由于我上课时的语言和情绪比较平淡,使得讲课重点不够突出,和学生的互动也显得很被动。在这样的情境下,学生很难集中精神完成整节课,更无法激发学生的学习兴趣。因此,我在教学中必须要注重学生学习积极性的调动,讲课时突出重点,引导学生突破难点。通过反思这一课的课堂教学,我发现部分学生对知识的理解不够,不能灵活应用知识于实际生活。对这一课进行全面反思后,我认识到要善于处理好教学中知识传授与能力培养的关系,巧妙地引导学生解决生活中的数学问题。不断地激发学生的学习积极性与主动性,培养学生思维能力、想象力和创新精神,使每个学生的身心都能得到充分的发展。这些失误给了我了一个今后努力的方向。当然,本节课也有值得今后借鉴的地方:一、培养学生会用数学知识解决实际问题数学来源于生活,又服务于生活。在实际生活中,数、形随处可见,无处不在。好的实际问题容易引起学生的兴趣,激发学生探索和发现问题的欲望,使学生感到数学课很熟悉,数学知识离我们很近。不过,学生在解决实际问题的过程中,主要存在几点困难,一是学生见到实际问题就畏惧,尤其是对于题目较长的实际问题更加抵触,根本不想读题;二是学生对实际问题背景不熟悉,熟悉问题背景花费一定时间;三是对于实际问题,学生不知如何下手解决,所用知识是什么,用什么思想方法解决。为了克服这种困难,本节课专门设计了一个较为贴近生活的实际问题,这样做的好处,一是体现问题具有现实的用途数学的有用性,二是与本节课的知识内容及数学思想方法有直接关系。这个问题解决了,以后学生再见到类似的实际问题时,就不会感到陌生。二、充分体现学生的主体地位教学中,要把尊重学生、关注学生的发展动态始终放在第一位。给学生多次展示自己的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论