平移伸缩变换的技巧.doc_第1页
平移伸缩变换的技巧.doc_第2页
平移伸缩变换的技巧.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面内曲线平移伸缩变换的技巧江苏省靖江高级中学 蔡正伟在高中教材中,平移变换是在向量中提出来的,而伸缩变化是在三角函数介绍的,因为有了初中的“左加右减,上加下减”的结论,在教学过程中,很多同学往往会简单的套用这个结论,导致得到和正确答案完全相反的结论,笔者在近几年教学中,总结了一套简单且容易操作的处理方法,供同学们学习时参考。曲线平移和放缩都可以依据以下结论处理:所有的平移和放缩都是x,y在变,且变化的规律与习惯相反。一、平移规律中的“习惯”就是在坐标平面内特征,即左右平移是x在变化,且向左变小,向右变大;上下平移是y在变,且向下变小,向上变大。下面举例说明。例1 将函数的图象向左平移2个单位,向上平移1个单位。求平移后的函数解析式。解:向左平移2个单位,“习惯”是越左越小,而变化的结果将原来解析式中的x变成;向上平移1个单位,“习惯”是越上越大,而变化的结果是将原来解析式中的y变成。所以平移后的函数解析式是。例2 求向右平移个单位,向下平移2个单位后的得到的函数解析式。解:依据以上规律,就是将原来的解析式中的x变成,y变成,所以平移后的函数解析式是,化简后得。例1也可以用“左加右减,上加下减”来处理,但如果不能从本质上弄清问题,就会出现错误,如例2还是套用“左加右减,上加下减”来处理,得到的结论就可能是。二、伸缩课本在三角函数这一章中给出了放缩的规律,笔者发现这个规律可以和平移规律整合在一起。具体的规律是:纵坐标不变横坐标变为原来的倍就是将原来解析式中的x变成;横坐标不变纵坐标变为原来的A倍就是将原来解析式中的y变成。例3 (2000年理科全国卷)经过怎样的平移和伸缩得到。解:。(变化一)(1)y变成了2y,故横坐标不变,纵坐标变为原来的;(2)x变成了2x,故纵坐标不变,横坐标变为原来的; (3)x变成了,故将图象右移个单位,需要将写成;(4)y变成了,故将图象上移个单位。(变换二)(1)y变成了2y,故横坐标不变,纵坐标变为原来的;(2)x变成了,故将图象右移;个单位纵坐标不变,横坐标变为原来的; (3)x变成了,故纵坐标不变,横坐标变为原来的;(4)y变成了,故将图象上移个单位。变换一和变换二的差别就先放缩后平移还是平移后放缩,变换一的第(3)步比较容易错,如果理解“都是x、y在变,变化规律与习惯相反”的规律后,每一步只需抓住变的实质,就可以轻松处理类似问题。另外,这个结论对于平面内的曲线平移都是适用的。有兴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论