二、导数的应用3.8函数的极值与最值.ppt_第1页
二、导数的应用3.8函数的极值与最值.ppt_第2页
二、导数的应用3.8函数的极值与最值.ppt_第3页
二、导数的应用3.8函数的极值与最值.ppt_第4页
二、导数的应用3.8函数的极值与最值.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数的极值与最值 1 进一步掌握求函数极值的方法和步骤 2 理解函数的极值和最值的区别和联系 3 掌握求函数在闭区间上最值的求法 学习目标 复习回顾 1 当函数f x 在x0处连续时 判别f x0 是极大 小 值的方法是 如果在x0附近的左侧右侧 那么 f x0 是极大值 如果在x0附近的左侧右侧 那么 f x0 是极小值 2 导数为零的点是该点为极值点的必要条件 而不是充分条件 极值只能在函数不可导的点或导数为零的点取到 3 在某些问题中 往往关心的是函数在一个定义区间上 哪个值最大 哪个值最小 而不是极值 新课讲授 观察右边一个定义在区间 a b 上的函数y f x 的图象 发现图中 是极小值 是极大值 在区间上的函数的最大值是 最小值是 f x1 f x3 f x2 f b f x3 问题在于如果在没有给出函数图象的情况下 怎样才能判断出f x3 是最小值 而f b 是最大值呢 设函数f x 在 a b 上连续 在 a b 内可导 则求f x 在 a b 上的最大值与最小值的步骤如下 求y f x 在 a b 内的极值 极大值与极小值 将函数y f x 的各极值与f a f b 作比较 其中最大的一个为最大值 最小的一个为最小值 求函数的最值时 应注意以下几点 1 函数的极值是在局部范围内讨论问题 是一个局部概念 而函数的最值是对整个定义域而言 是在整体范围内讨论问题 是一个整体性的概念 2 闭区间 a b 上的连续函数一定有最值 开区间 a b 内的可导函数不一定有最值 但若有唯一的极值 则此极值必是函数的最值 3 函数在其定义域上的最大值与最小值至多各有一个 而函数的极值则可能不止一个 也可能没有极值 并且极大值 极小值 不一定就是最大值 最小值 但除端点外在区间内部的最大值 或最小值 则一定是极大值 或极小值 4 如果函数不在闭区间 a b 上可导 则在确定函数的最值时 不仅比较该函数各导数为零的点与端点处的值 还要比较函数在定义域内各不可导的点处的值 5 在解决实际应用问题中 如果函数在区间内只有一个极值点 这样的函数称为单峰函数 那么要根据实际意义判定是最大值还是最小值即可 不必再与端点的函数值进行比较 例1 求函数y x4 2x2 5在区间 2 2 上的最大值与最小值 解 令 解得x 1 0 1 当x变化时 的变化情况如下表 从上表可知 最大值是13 最小值是4 例2 函数y x 3x 9x在 4 4 上的最大值为 最小值为 解 由f x 3x 6x 9 0 又区间 4 4 端点处的函数值为f 4 20 f 4 76 得x1 3 x2 1 相应的函数值为f 3 27 f 1 5 当x变化时 y y的变化情况如下表 可知函数在 4 4 上的最大值为f 4 76 最小值为f 1 5 例3 设 函数的最大值为1 最小值为 求常数a b 解 令 得x 0或a 当x变化时 f x 的变化情况如下表 由表知 当x 0时 f x 取得极大值b 而f 0 f a f 0 f 1 f 1 f 1 故需比较f 1 与f 0 的大小 又f 1 f a a 1 2 a 2 2 0 所以f x 的最小值为f 1 1 3a 2 b 3a 2 f 0 f 1 3a 2 1 0 故b 1 f x 的最大值为f 0 b 思考题 04浙江文21 本题满分12分 已知a为实数 求导数 若 求在 2 2 上的最大值和最小值 若在 2 和 2 上都是递增的 求a的取值范围 2 a 2 课堂小结 1 求在 a b 上连续 a b 上可导的函数f x 在 a b 上的最值的步骤 1 求f x 在 a b 内的极值 2 将f x 的各极值与f a f b 比较 其中最大的一个是最大值 最小的一个是最小值 2 求函数的最值时 应注意以下几点 1 要正确区分极值与最值这两个概念 2 在 a b 上连续 a b 上可导的函数f x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论