数学人教版九年级上册垂直于弦的直径 .doc_第1页
数学人教版九年级上册垂直于弦的直径 .doc_第2页
数学人教版九年级上册垂直于弦的直径 .doc_第3页
数学人教版九年级上册垂直于弦的直径 .doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

24.1.2 垂直于弦的直径教学目标:知识目标:通过观察实验,使学生理解圆的轴对称性; 掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题; 掌握辅助线的作法过圆心作一条与弦垂直的线段。能力目标:通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力; 向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。情感目标:结合本课教学特点,向学生进行爱国主义教育和美育渗透; 激发学生探究、发现数学问题的兴趣和欲望。教学重点:垂径定理及其应用。教学难点:垂径定理的证明。教学方法:探究发现法。教具准备:自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。教学设计:一、复习引入 复习上节课内容:包括圆的概念以及与圆相关的概念 二、探索新知把一个圆沿着它的任意一条直径对折,重复几次,你发现了什么?由此你能得到什么结论?结论:圆是轴对称图形,其对称轴是任意一条过圆心的直线请同学按下面要求完成下题:如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)将圆O沿CD所在直线折叠,你能发现图中有哪些等量关系?说一说你理由(老师点评)(3)是轴对称图形,其对称轴是CD(4)AM=BM,弧AC=弧BC,弧AD=弧BD,即直径CD平分弦AB,并且平分弧ACB和弧ADB这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。 下面我们用逻辑思维给它证明一下: 已知:直径CD、弦AB且CDAB垂足为M 求证:AM=BM,. 分析:要证AM=BM,只要证AM、BM构成的两个三角形全等因此,只要连结OA、OB或AC、BC即可证明:如图,连结OA、OB,则OA=OB在RtOAM和RtOBM中 RtOAMRtOBM AM=BM 点A和点B关于CD对称 O关于直径CD对称 当圆沿着直线CD对折时,点A与点B重合,与重合,与重合, 三、 学生活动(证明垂径定理的逆定理)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。已知:直径CD、弦AB(除直径) 且 AM=BM 求证:(1)CDAB(2),四、 例题讲解1、如图所示,AB是O的弦,OCAB于C,若AB=2cm,OC=1cm,则O的半径长为_cm2.在直径为50cm的圆中,弦AB为40cm,弦CD为48cm,且ABCD,求AB与CD之间距离 解:如图所示,过O作OMAB, ABCD,ONCD 在RtBMO中,BO=25cm 由垂径定理得BM=AB=40=20cm, OM=15cm 同理可求ON=7cm, 所以MN=OM-ON=15-7=8cm 以上解答有无漏解,漏了什么解,请补上五、拓展训练例1如图,一条公路的转弯处是一段圆弦(即图中,点O是的圆心,其中CD=600m,E为上一点,且OECD,垂足为F,EF=90m,求这段弯路的半径分析:例1是垂径定理的应用,解题过程中使用了列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握 解:如图,连接OC 设弯路的半径为R,则OF=(R-90)m OECD CF=CD=600=300(m) 根据勾股定理,得:OC2=CF2+OF2 即R2=3002+(R-90)2 解得R=545 这段弯路的半径为545m 练习有一石拱桥的桥拱是圆弧形,如图24-5所示,正常水位下水面宽AB=60m,水面到拱顶距离CD=18m,当洪水泛滥时,水面宽MN=32m时是否需要采取紧急措施?请说明理由 六、总结 本节课应掌握: 1圆是轴对称图形,任何一条直径所在直线都是它的对称轴 2垂径定理及其推论以及它们的应用七、反思本节课也存在着不足和需改进,甚至可以进一步完善之处:(1)对于新授课板书的设计上应精心布局,文字语言、符号语言、分析语言缺一不可,并且应该再配上基本图形以加深学生对定理的了解,除了突出要点,还需让学生感受到定理使用的规范性。这样不但能帮助学生了解和掌握教学的重点、难点,掌握知识的发展脉络和逻辑体系,更能调动学生多感官参加学习活动,使学生清晰地意识到实际的教学过程,启发学生的思维随着教学的进程而顺利发展。(2)应适当地拔高学生对新课的理解体会。在新课引入部分证明直径平分弦这一结论时,不能只局限于学生得到添加半径作为辅助线这一结果上,而应利用这一机会帮助学生对之前所学的证明两条线段相等的几种方法进行回顾,以使证明方法系统化,不单纯为一节课服务。在垂径定理应用时,对于添加过圆心的垂线段的缘由也可以结合线段是轴对称图形,圆也是轴对称图形,而它们的公共对称轴即这条垂线段,帮助学生加深对轴对称图形添加辅助线的体会。最后,本节同课异构活动也让我发现了今后需要改进和进一步探索的方向:即要进一步培养自身操控教学进度的能力和精选例题的能力;不断地磨练自身的讲授课技能,在设问的指向上和时机上不断地积累经验,才能在教学上有进一步的提高。数学是科学,数学是艺术,数学是语言,数学蕴涵着人类文化的美。数学教育是面向全体学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论