


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年级九年级课题28.1 锐角三角函数(1)学校 怀集二中教学媒体多媒体主讲人何若婵教学目标知识技能1初步了解锐角三角函数的意义,初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义。.2、会根据已知直角三角形的边长求一个锐角的正弦值。过程方法经历探究锐角三角函数的定义的过程,逐步发现一个锐角的对边与斜边的比值不变的规律,从中思考这种规律所揭示的数学内涵.情感态度使学生体验数学活动中的探索与发现,培养学生由特殊到一般的演绎推理能力,学会用数学的思维方式思考,发现,总结,验证.教学重点正确理解正弦概念,会根据直角三角形的边长求一个锐角的正弦值教学难点理解在直角三角形中,对于任意一个锐角,它的对边与斜边的比值是固定值. 教 学 过 程 设 计教学程序及教学内容设计意图一、 新课导入1、在RtABC中,C=90,A=30,BC=10m,求AB2、在RtABC中,C=90,A=30,AB=20m,求BC(一)、认真阅读课本P74-76的内容,完成下列问题,并体验知识点的形成过程。1:如果使出水口的高度为50m,那么需要准备多长的水管? ; 如果使出水口的高度为a m,那么需要准备多长的水管? ;结论:直角三角形中,30角的对边与斜边的比值是 2:在RtABC中,C=90,A=45,A对边与斜边的比值是一个定值吗?如果是,是多少?结论:直角三角形中,45角的对边与斜边的比值 3:在RtABC中,C=90,B=60,B对边与斜边的比值是一个定值吗?如果是,是多少?结论:直角三角形中,60角的对边与斜边的比值 4: RtABC和RtABC中,C=C=90,A=A=a,那么有什么关系为什么?结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比值 5、在RtABC中,C=90,我们把锐角A的对边与斜边的比叫做A的_,记作_,即_(二)在研读的过程中,你认为有那些不懂得问题?四、归纳小结(一)这节课我们学到了什么?(二)划出你认为重点的语句,并谈谈你对重点语句的关键词语的理解。五、强化训练【A】组1、 如图(1),在RtABC中,C=90,求sinA=_ sinB=_ 2、 如图(2),在RtABC中,C=90,求sinA=_ sinB=_ 3、 在ABC中,C=90,BC=2,sinA=,则边AC的长是( )A B3 C D 4、如图,已知点P的坐标是(a,b),则sin等于( )A B C【B组】5、在RtABC中,C=900,sinA=,求sinB的值.6、如图,RtABC中,C=900,CDAB于D点,AC=3,BC=4,求sinA、sinBCD的值. 【C】组7、在RtABC中,C=900,AC=5cm,BC=3cm,则sinA=_,sinB=_.8、在RtABC中,C=900,如果各边的长度都扩大2倍,那么锐角A的正弦值( )A、扩大两倍 B、缩小两倍 C、没有变化 D、不能确定9、在RtABC中,C=900,AB=15,sinA=,则AC=_,SABC=_.10、在RtABC中,C=900,A=300,BD平分ABC交AC边于D点,则sinABD的值为_.让学生初步体验一个锐角确定以后,它的对边与斜边的比值也随之不变的事实,为锐角的正弦的引出提供背景.培养学生从特殊到一般的演绎推理能力.以“在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值。”为基础给出锐角正弦概念,结合图形,便于学生理解认识和应用.加强教学反思,将知识进行系统整理,总结方法,形成技能,提高学生的学习效
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论