高中数学第一章1.2排列与组合例题与探究.docx_第1页
高中数学第一章1.2排列与组合例题与探究.docx_第2页
高中数学第一章1.2排列与组合例题与探究.docx_第3页
高中数学第一章1.2排列与组合例题与探究.docx_第4页
高中数学第一章1.2排列与组合例题与探究.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2 排列与组合典题精讲【例1】 用1、2、3、4、5、6这六个数字可组成多少个无重复数字且不能被5整除的五位数?思路分析:组成符合条件的五位数可分两步,首先确定个位数字,然后再确定其他各位数字;或按是否含有5这个特殊的数字,分为两类;或由所有16这6个数组成的五位数,去掉16这6个数组成可被5整除的五位数.解法一:不能被5整除,末位只能从1、2、3、4、6五个数字中选1个,有种方法;再从余下5个数字中选4个放在其他数位,有种方法.由乘法原理,所求五位数有=600(个).解法二:不含有数字5的五位数有个;含有数字5的五位数,末位不选5有种方法,其余数位有种选法,含有5的五位数有个.因此可组成不能被5整除的无重复数字的五位数有+=600(个).解法三:由16组成的无重复数字的五位数有个,其中能被5整除的有个.因此,所求的五位数共有-=720-120=600(个).绿色通道:若从最高位数字开始考虑,则问题就无法解决.被5整除的数,个位数字必须是0或5,因此,被5整除的问题,一般从个位数字开始考虑.变式训练1 用0、1、2、3、4、5这六个数字可组成多少个无重复数字且能被5整除的五位数?思路解析:分为两类:一类是个位数字为0,再从余下的5个数字中选4个放在其余数位上有种方法;另一类是个位数字为5,由于0不能放在首位,所以在1、2、3、4中选一个数放在首位有4种方法,然后从余下的4个数中选3个放在中间三个数位上有种方法,此时有4种方法.故由加法原理可得能被5整除的五位数有+4=216(个).答案:216.变式训练2 用0、1、2、3、4、5这六个数字可组成多少个无重复数字的五位偶数?思路解析:分为两类:一类是个位数字为0,再从余下的5个数字中选4个放在其余数位上有种方法;另一类是个位数字为2或4,由于0不能放在首位,所以余下4个数中选一个数放在首位有4种方法,然后余下的4个数选3个放在中间三个数位上有,此时有24种方法.故由加法原理可得五位偶数有+24=312(个).答案:312.【例2】 从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各一台,则不同的取法共有( )A.140种 B.84种 C.70种 D.35种思路解析:取出的3台电视机中要求至少有甲型与乙型各1台,它包括两种可能:2台甲型与1台乙型、1台甲型与2台乙型,所以可用分类原理和分步原理来解决,另外也可以用间接法解决.方法一:从4台甲型电视机中取2台和5台乙型电视机中取1台有种取法;从4台甲型电视机中取1台和5台乙型电视机中取2台有种取法.所以共有+ =70(种),故应选C.方法二:从所有的9台电视机中取3台有种取法,其中全部为甲型的有种取法,全部为乙型的有种取法,则至少有甲型与乙型各1台的取法共有-=70(种),故应选C.答案:C黑色陷阱:解决这类问题最容易出现的错误就是产生重复,比如首先从4台甲型电视机与乙型电视机中各取1台,有种取法,再在剩下的7台电视机中任取1台,有种取法,所以不同的取法共有=140种.这种看起来很不错的解法实际上是错误的,因为它产生了重复.避免产生重复的方法就是“先分类后分步”.变式训练1 假设200件产品中有3件次品,现在从中任意抽取5件,其中至少有2件次品的抽法有( )A.种 B.()种C.种 D.(+)种思路解析:已知200件产品中有3件次品,197件合格品,则至少有2件次品的抽法为2件次品、3件合格品或3件次品、2件合格品,所以其抽法有.答案:D变式训练2 某计算机商店有6台不同的品牌机和5台不同的兼容机,从中选购5台,且至少有品牌机和兼容机各2台,则不同的选购方法有( )A.1 050种 B.700种 C.350种 D.200种思路解析:分两类:(1)从6台不同的品牌机中选3台和从5台不同的兼容机中选2台;(2)从6台不同的品牌机中选2台和从5台不同的兼容机中选3台.所以不同的选购方法有 +=350(种).答案:C【例3】(1)写出从5个元素a,b,c,d,e中任取三个元素的所有组合,并求出其组合数.思路分析:考虑画出如下树形图,注意按给出字母从左到右的顺序来考虑.解:根据树形图,所有组合为abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde.组合数为=10(个).(2)将A,B,C,D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B不排在第二,C不排在第三,D不排在第四.试写出他们四人所有不同的排法.思路分析:由于A不排在第一,所以第一只能排B,C,D中的一个.据此可分为三类,作树图可得解:所有的排法为BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA.绿色通道:写符合条件的组合或排列要运用树图,利用它可以具体列出各种情况,从而避免重复或遗漏,能把抽象问题具体化,使解题思路明朗.其中排列的树形图与组合的树形图是有区别的,排列的树形图中其元素不能重复出现但可任意排列,而组合的树形图中其元素也不能重复出现,但元素出现的次序一般按照从左到右的顺序来考虑,否则容易出现重复或遗漏.变式训练1 a,b,c,d四人排成一列,a不在排头,d不在排尾,写出所有的排列.思路分析:作出树图.图中,有4层分枝的树叶,对应一个合要求的排列,共有14个.解:badc,bcda,bdac,bdca,cadb,cbda,cdab,cdba,dabc,dacb,dbac,dbca,dcab,dcba.变式训练2 利用树图,写出用数字1、2组成的所有四位数.(数字可以重复)思路分析:因为每个数位上的数字只可能是1或2,所以在树图中,每个分枝都只有两个分叉,左边写1右边写2,经过四次分叉即可写出全部的四位数.图中,共有16片“树叶”,对应着16个四位数.解:1 111,1 112,1 121,1 122,1 211,1 212,1 221,1 222,2 111,2 112,2 121,2 122,2 211,2 212,2 221,2 222.【例4】 三个女生和五个男生排成一排,(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?(4)如果两端不能都排女生,可有多少种不同的排法?思路分析:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,排成一排有种不同排法.对于其中的每一种排法,三个女生之间又都有种不同的排法,因此共有=4 320(种)不同的排法.(2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空当.这样共有4个空当,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让三个女生插入都有种方法,因此共有=14 400(种)不同的排法.(3)方法一:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有种不同的排法,对于其中的任意一种排法,其余六位都有种排法,所以共有=14 400(种)不同的排法.方法二:(间接法)3个女生和5个男生排成一排共有种不同的排法,从中扣除女生排在首位的种排法和女生排在末位的种排法,但这样两端都是女生的排法在扣除女生排在首位的情况时被扣去一次,在扣除女生排在未位的情况时又被扣去一次,所以还需加一次回来,由于两端都是女生有种不同的排法,所以共有-2+=14 400种不同的排法.方法三:(元素分析法)从中间6个位置中挑选出3个来让3个女生排入,有种不同的排法,对于其中的任意一种排法,其余5个位置又都有种不同的排法,所以共有=14 400种不同的排法.(4)方法一:因为只要求两端不都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可有种不同的排法;如果首位排女生,有种排法,这时末位就只能排男生,有种排法,首末两端任意排定一种情况后,其余6位都有种不同的排法,这样可有种不同排法.因此共有+=36 000种不同的排法.方法二:3个女生和5个男生排成一排有种排法,从中减去两端都是女生排法种,就能得到两端不都是女生的排法种数.因此共有-=36 000种不同的排法.解:(1)=4 320(种).(2)=14 400(种).(3)=14 400(种)或-2+=14 400(种)或=14 400(种).(4)+=36 000(种)或-=36 000(种).绿色通道:解决排列、组合应用问题最常用也是最基本的方法是位置分析法和元素分析法.若以位置为主,需先满足特殊位置的要求,再处理其他位置,有两个以上约束条件,往往是考虑一个约束条件的同时要兼顾其他条件.若以元素为主,需先满足特殊元素要求再处理其他的元素.间接法也称做排除法或排异法,有时用这种方法解决问题来得简单、明快.捆绑法、插入法对于有的问题的确是适用的好方法,要认真搞清在什么条件下使用.变式训练1 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中有3名男生3名女生,且男生不能相邻,有多少种不同的排法?解:(1)分两排照相实际上与排成一排照相一样,只不过把第36个位子看成是第二排而已,所以实际上是6个元素的全排列问题.故有=720种.先确定甲的排法,有种;再确定乙的排法,有种;最后确定其他人的排法,有种,因为这是分步的问题,所以用乘法原理,有=2424=192种不同排法.采用“捆绑法”,即先把甲、乙两人看成一人,这样有种不同排法,然后甲、乙两人之间再排队,有种排法,因为是分步问题,应当用分步计数原理,所以有=1202=240种排法.(4)采用“插入法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如_女_女_女_,再将3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样,男生有种排法,女生有种排法,因为是分步问题,应当用乘法原理,所以共有=246=144种排法.变式训练2 5名男生、2名女生站成一排照相.(1)两名女生要在两端,有多少种不同的站法?(2)两名女生都不站在两端,有多少不同的站法?(3)两名女生不相邻,有多少种不同的站法?(4)女生甲要在女生乙的右方,有多少种不同的站法?解:(1)两端的两个位置,女生任意排,中间的五个位置男生任意排:=240(种).(2)中间的五个位置任选两个排女生,其余五个位置任意排男生:=2 400(种).(3)把男生任意全排列,然后在六个空中(包括两端)有顺序地插入两名女生:=3 600(种).(4)七个位置中任选五个排男生,问题就已解决,因为留下两个位置女生排法是既定的:=2 520(种).【例5】 解方程:(1)3Ax8=4;(2).思路分析:利用排列数公式和组合数公式,消掉,转化为x的代数方程再求解;同时注意排列数或组合数的方程或不等式中未知数的取值范围;对于排列数或组合数公式的两种形式能合理运用:一般连乘形式用于求值,而阶乘形式常用于化简和证明.解:(1)由排列数公式,原方程可化为,化简得x2-19x+78=0,解得x1=6,x2=13.因为x8且x-19,xN*,所以原方程的解是x=6.(2)由组合数公式,原方程可化为.化简得6-(6-x)=,解得x1=2,x2=21.因为x5且x6,x7,xN*,所以原方程的解是x=2.变式训练1 解方程:.解:由排列数公式,得3x(x-1)(x-2)=2(x+1)x+6x(x-1).因为x3,所以3(x-1)(x-2)=2(x+1)+6(x-1),3x2-17x+10=0.解之,得x=5,x=,所以x=5.变式训练2 解不等式:.解:由组合数公式,原方程可化为.化简得n2-9n-100,解得-1n10.因为n6,nN*,所以不等式的解集为6,7,8,9.问题探究问题1:在解决排列和组合问题中都用到“树图”,它起到什么作用?导思:树图法虽然在解决排列和组合问题中不是用的很多或许有时根本不去理会它,但是它在教材中还是占有一定的比例去介绍,对教材前后内容的联系起着铺垫的作用,是解决排列和组合问题的基础方法.虽然解决排列和组合问题的方法很多,但都是一些技巧性较强、适用性很窄的方法,从而会让学生感到做题无从选择、举棋不定.树图法虽操作啰嗦,但适应性很广泛,思路明确清晰,有利于我们打开困惑,找出规律,为解题开拓新的局面.对此我们应不能低估其作用,而片面追求各种各样的技巧性方法.探究: “树”是图论中的一个概念,它指的是一个连通的无圈图.“树图”就是“数”的图形,好象一颗树一样,从树干上长出几个主枝,主枝又可分叉长出分枝,分枝再分叉成小分枝最后一次分枝出的小分枝我们称为“树叶”.利用树图可以把排列组合问题直观化、形象化、具体化,起到了“数形结合”中“形”的作用,从而很容易不遗漏、不重复地写出所有的排列或组合,一般适用于数字不太大的情况.若对于数字较大的排列组合问题,先缩减数字,用树图帮助

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论