




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 1平面向量的实际背景及基本概念 2 1 3相等向量与共线向量 问题提出 1 向量与数量有什么联系和区别 向量有哪几种表示 联系 向量与数量都是有大小的量 区别 向量有方向且不能比较大小 数量无方向且能比较大小 向量可以用有向线段表示 也可以用字母符号表示 2 什么叫向量的模 零向量和单位向量分别是什么概念 向量的模 表示向量的有向线段的长度 零向量 模为0的向量 单位向量 模为1个单位长度的向量 3 引进向量概念后 我们就要建立相关的理论体系 为了研究的需要 我们必须对向量中的某些现象作出合理的约定或解释 特别是两个向量的相互关系 对此 我们将作些研究 相等向量与共线向量 探究 一 相等向量与相反向量 思考1 向量由其模和方向所确定 对于两个向量a b 就其模等与不等 方向同与不同而言 有哪几种可能情形 模相等 方向相同 模相等 方向不相同 模不相等 方向相同 模不相等 方向不相同 思考2 两个向量不能比较大小 只有 相等 与 不相等 的区别 你认为如何规定两个向量相等 长度相等且方向相同的向量叫做相等向量 向量a与b相等记作a b 思考3 用有向线段表示非零向量和 如果 那么a b c d四点的位置关系有哪几种可能情形 思考4 对于非零向量和 如果 通过平移使起点a与c重合 那么终点b与d的位置关系如何 长度相等且方向相反的向量叫做相反向量 思考5 非零向量与称为相反向量 一般地 如何定义相反向量 思考6 如果非零向量与是相反向量 通过平移使起点a与c重合 那么终点b与d的位置关系如何 探究 二 平行向量与共线向量 思考1 如果两个向量所在的直线互相平行 那么这两个向量的方向有什么关系 思考2 方向相同或相反的非零向量叫做平行向量 向量a与b平行记作a b 那么平行向量所在的直线一定互相平行吗 方向相同或相反 思考3 零向量0与向量a平行吗 规定 零向量与任一向量平行 思考4 将向量平移 不会改变其长度和方向 如图 设a b c是一组平行向量 任作一条与向量a所在直线平行的直线l 在l上任取一点o 分别作 a b c 那么点a b c的位置关系如何 思考5 上述分析表明 任一组平行向量都可以移动到同一直线上 因此 平行向量也叫做共线向量 如果非零向量与是共线向量 那么点a b c d是否一定共线 思考6 若向量a与b平行 或共线 则向量a与b相等或相反吗 反之 若向量a与b相等或相反 则向量a与b平行 或共线 吗 思考7 对于向量a b c 若a b b c 那么a c吗 思考8 对于向量a b c 若a b b c 那么a c吗 例1判断下列命题是否正确 1 若两个单位向量共线 则这两个向量相等 2 不相等的两个向量一定不共线 3 在四边形abcd中 若向量与共线 则该四边形是梯形 4 对于不同三点o a b 向量与一定不共线 理论迁移 例2如图 设o为正六边形abcdef的中心 分别写出与 相等的向量 例3如图 在 abc中 d e f分别是ab bc ca边上的点 已知求证 小结作业 1 相等向量与相反向量是并列概念 平行向量与共线向量是同一概念 相等向量 相反向量 与平行向量是包含概念 2 任意两个相等的非零向量 都可用同一条有向线段表示 并且与有向线段的起点无关 3 向量的平行 共线与平面几何中线段的平行 共线是不同的概念 平行向量 共线向量 对应的有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年放射肿瘤学科乳腺癌放疗后皮肤护理考试答案及解析
- 2025年急危重症抢救处理技能模拟考试答案及解析
- 2025年康复护理康复评估与方案制定模拟考试卷答案及解析
- 2025年麻醉科全麻安全操作技巧专业考核模拟考试卷答案及解析
- 2025年神经外科手术常见并发症处理模拟测试卷答案及解析
- 酒泉市中石化2025秋招面试半结构化模拟题及答案法律与合规岗
- 中国移动四平市2025秋招半结构化面试模拟30问及答案
- 岳阳市中石油2025秋招笔试模拟题含答案新材料与新能源岗
- 运城市中石油2025秋招笔试模拟题含答案安全环保与HSE岗
- 临沧市中石化2025秋招笔试模拟题含答案炼化装置操作岗
- Unit 1~2单元月考测试(含答案) 2025-2026学年译林版(2024)八年级英语上册
- 中秋国庆节假期安全教育安全防范不松懈宣传课件模板
- 八年级语文写作技巧与课堂教案
- 鼻出血的课件护理
- 2025年干细胞治疗行业研究报告及未来行业发展趋势预测
- (2025年标准)清理乱账服务协议书
- 2025年4月自考00155中级财务会计试题及答案含评分标准
- 道路工程培训课件
- DGTJ08-2004B-2020 建筑太阳能光伏发电应用技术标准
- 国庆假期大学生安全教育
- 呼吸内科出科汇报
评论
0/150
提交评论