


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4课时相似三角形的判定(3)教学目标 知识与技能使学生了解三角形相似的判定方法4及直角三角形相似定理的证明方法并会运用过程与方法1类比证明三角形全等的方法(AAS,ASA,HL),继续渗透和培养学生对类比思想的认识和理解2通过了解定理的证明方法培养和提高学生利用已学知识证明新命题的能力情感、态度与价值观通过学习培养学生类比的意识,了解由特殊到一般的唯物辩证法的观点重难点:重点两个判定定理的应用难点了解两个判定定理的证明方法与思路教学设计一、复习引入师:判定两个三角形全等的方法有哪几种?生:SAS,ASA(AAS),SSS,HL师:三角形相似的判定方法2和3是类比三角形全等的判定方法“SAS”,“SSS”得出的,那我们能否类比“ASA(AAS)”,“HL”用同样的方法得出新的三角形相似的判定方法呢?二、共同探究,获取新知推理证明探究1:师:由于“ASA(AAS)”中只有一条边,是不能写出对应边的比的,那么就剩下两个角了,即两角分别相等的两个三角形相似吗?教师用多媒体出示:如图,在ABC和ABC中,AA,BB,判断ABC和ABC是否相似,为什么?教师引导学生在稿纸上按要求画图学生动手画图、测量、独立研究三角形相似的判定方法4:两角分别相等的两个三角形相似探究2:师:判定两个直角三角形是否全等时,除了用那些一般的方法外还可以用“HL”的方法,那么判定两个直角三角形相似是否也有类似的方法呢?教师多媒体课件出示:如图,在RtABC和RtABC中,CC90,.判断RtABC与RtABC是否相似,为什么?师:已知一个直角三角形的斜边、一条直角边与另一个直角三角形的斜边、一条直角边对应成比例,你能判断这两个直角三角形是否相似吗?学生思考、讨论后回答生:设k,则ABkAB,ACkAC,根据勾股定理BC可以用含AB,AC的式子表示,进而可以用含AB,AC的式子表示,再用勾股定理就得到BCkBC,所以就得到了三边对应成比例,这两个三角形相似师:你回答得太好了!现在请同学们写出具体的步骤,然后与课本上的对照,将不完善的地方改正学生证明并修改证明:设k,则ABkAB,ACkAC.BCkkBC,k,ABCABC.师:所以我们得到了判定两个直角三角形相似的一个定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似三、练习新知1如图,锐角ABC的边AB,AC上的高CE,BF相交于点D,请写出图中的两对相似三角形生甲:ABF和ACE.生乙:EDB和FDC.2如图,在RtABC中,C90,CD是边AB上的高,求证:(1)CD2ADBD;(2)BC2ABBD,AC2ABAD.证明:(1)ADC和ACB是直角三角形,AACD90,BCDACD90,ABCD,又ADCCDB90,ADCCDB.CD2ADBD.(2)BB,ACBCDB,ABCCBD.BC2ABBD.同理可证ABCACD.AC2ABAD.四、课堂小结本节课主要学习了三角形相似的另一个判定定理:两角对应相等的两个三角形相似除了前面讲过的针对任意三角形相似的判定方法外,还有斜边和直角边分别对应成比例的两个直角三角形相似这一判定定理在做题时要灵活运用,选取合适的方法教学反思:前面已经学习了几种三角形相似的判定方法,所以这节课以学生为主导,教师加以提示、纠正、鼓励学生自己探索,讨论得出新的判定定理,培养学生的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瑞新安全培训课件
- 理财课件简介及讲解
- 安全文明施工课件教学
- 球场安全意识培训内容课件
- 农业无人机租赁市场细分领域竞争格局与2025年市场细分领域增长潜力分析
- 安全教育最后一课课件
- 安全教育日培训记录课件
- 格力风管机工程方案(3篇)
- 安全教育教师培训笔记课件
- 牧草育种杂交育意义课件
- 工程质量检查制度
- 脑瘫的分类及临床表现
- 风力发电基础施工合同范本
- ktv承包经营合同范文
- 《实战电池性能测试》课件
- 2025年贵州蔬菜集团有限公司招聘笔试参考题库含答案解析
- 2025年1月浙江省高二物理学业水平考试试卷试题(含答案详解)
- 2024年全国职业院校技能大赛高职组(环境检测与监测赛项)考试题库(含答案)
- 实验-大肠杆菌感受态细胞的制备及转化
- 2025年中考语文阅读复习:理解词语含义(含练习题及答案)
- GB/T 44421-2024矫形器配置服务规范
评论
0/150
提交评论