数学人教版九年级下册探究判定三角形相似.doc_第1页
数学人教版九年级下册探究判定三角形相似.doc_第2页
数学人教版九年级下册探究判定三角形相似.doc_第3页
数学人教版九年级下册探究判定三角形相似.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

27.2.1 相似三角形的判定(一)(2课时)一、教学目标1经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力2掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似),及平行线平分线段成比例定理和推论。3会运用“两个三角形相似的判定条件”和“三角形相似的预备定理及平行线平分线段成比例定理和推论”解决简单的问题二、重点、难点1重点:相似三角形的定义与三角形相似的预备定理及平行线平分线段成比例定理和推论2难点:三角形相似的预备定理的应用及平行线平分线段成比例定理和推论的应用3难点的突破方法(1)要注意强调相似三角形定义的符号表示方法(判定与性质两方面),应注意两个相似三角形中,三边对应成比例, 每个比的前项是同一个三角形的三条边,而比的后项分别是另一个三角形的三条对应边,它们的位置不能写错;(2)要注意相似三角形与全等三角形的区别和联系,弄清两者之间的关系全等三角形是特殊的相似三角形,其特殊之处在于全等三角形的相似比为1两者在定义、记法、性质上稍有不同,但两者在知识学习上有很多类似之处,在今后学习中要注意两者之间的对比和类比;(3)要求在用符号表示相似三角形时,对应顶点的字母要写在对应的位置上,这样就会很快地找到相似三角形的对应角和对应边;(4)相似比是带有顺序性和对应性的(这一点也可以在上一节课中提出):如ABCABC的相似比,那么ABCABC的相似比就是,它们的关系是互为倒数这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解;(5)“平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似”定理也可以简单称为“三角形相似的预备定理”这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似三、教学过程(一)课堂引入1复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形在ABC与ABC中,如果A=A, B=B, C=C, 且 我们就说ABC与ABC相似,记作ABCABC,k就是它们的相似比即两个三角形的对应角相等,对应边成比例。这样的两个三角形虽然大小不一定相等,但形状相同。(2) (新课讲解)1.定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。(可证明两个三角形相似)反之如果ABCABC,则有A=A, B=B, C=C, 且 相似三角形的性质:相似三角形的对应角相等,对应边成比例。问题:如果k=1,这两个三角形有怎样的关系?相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。强调: ABC与 ABC的相似比是k,则 ABC与 AB C的相似比是。如图 DAE ABC (1)写出对应边的比例式; D A E (2)写出所有相等的角; B C练习:判断下列命题是否正确。错误的,举出反例;正确的,用定义加以说明:所有的等腰三角形都相似。所有的等边三角形都相似。所有的直角三角形都相似。所有的等腰直角三角形都相似。教材P40的思考,并引导学生探索与证明2【归纳】平行线平分线段成比例定理 三条平行线截两条直线,所得的对应线段的比例分两种情况讲解教材P41图27.2-23【归纳】平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等 A(三)范例研讨,迁移练习: 1例1。如图,在 ABC中, D E DE/BC,D。E分别在AB,AC上。 求证:ADEABC B C F(教材P41思考)用相似的定义证明4【归纳】三角形相似的预备定理一 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似5例题讲解例2(补充)如图,在ABC中,DEBC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长 分析:由DEBC,可得ADEABC,再由相似三角形的性质,有 ,又由AD=EC可求出AD的长,再根据 求出DE的长 B D C E A解:略6、课堂练习1(选择)下列各组三角形一定相似的是( )A两个直角三角形 B两个钝角三角形 C两个等腰三角形 D两个等边三角形 2(选择)如图,DEBC,EFAB,则图中相似三角形一共有( )A1对 B2对 C3对 D4对3如图,在ABCD中,EFAB,DE:EA=2:3,EF=4,求CD的长 (CD= 10)七、课后练习 课后拓展(机动): (1)如图甲,已知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论