数学人教版七年级下册数学思想方法专题教学设计.docx_第1页
数学人教版七年级下册数学思想方法专题教学设计.docx_第2页
数学人教版七年级下册数学思想方法专题教学设计.docx_第3页
数学人教版七年级下册数学思想方法专题教学设计.docx_第4页
数学人教版七年级下册数学思想方法专题教学设计.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学思想方法专题相交线与平行线中的思想方法的运用教学目标:通过典例教学,使学生了解方程思想,分类讨论思想,转化思想,理解数学思想方法的特征,应用的条件,掌握数学思想方法的实质。教学重点:有意识地组织学生进行必要的解题训练,在对其分析和思考的过程中展示数学思想和具有代表性的数学方法。针对数学思维活动过程中展示出来的数学思想方法不失时机地进行提问与讨论、启发、引导学生领悟出思想方法教学难点:从具体数学问题和范例中总结、归纳解题方法,挖掘隐含在教学内容中的数学思想方法。教学过程:一情境导入:数学的学习既是知识的学习,也是方法的学习,数学思想方法是人们通过教学活动对数学知识所形成的一个总的看法或观点。数学思想方法是数学的灵魂和精髓,是将数学知识转化为数学能力的桥梁。今天我们来探究相交线与平行线中的数学思想方法的运用。二典例剖析:【规律总结】从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想.用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组).这种思想在代数、几何及实际生活中有着广泛的应用.【归纳总结】在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏. 【方法指导】转化思想是解决数学问题的一种最基本的数学思想.在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题.转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机. 三课堂小结:通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论