2021高考数学一轮复习 课后限时集训5 函数的单调性与最值 理 北师大版.doc_第1页
2021高考数学一轮复习 课后限时集训5 函数的单调性与最值 理 北师大版.doc_第2页
2021高考数学一轮复习 课后限时集训5 函数的单调性与最值 理 北师大版.doc_第3页
2021高考数学一轮复习 课后限时集训5 函数的单调性与最值 理 北师大版.doc_第4页
2021高考数学一轮复习 课后限时集训5 函数的单调性与最值 理 北师大版.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课后限时集训5函数的单调性与最值建议用时:45分钟一、选择题1下列函数中,在区间(0,)内单调递减的是()ayxbyx2xcyln xxdyexxa对于a,y1在(0,)内是减函数,y2x在(0,)内是增函数,则yx在(0,)内是减函数;b,c选项中的函数在(0,)上均不单调;选项d中,yex1,而当x(0,)时,y0,所以函数yexx在(0,)上是增函数2函数f(x)ln(x22x8)的单调递增区间是()a(,2)b(,1)c(1,)d(4,)d由x22x80,得x4或x2.因此,函数f(x)ln(x22x8)的定义域是(,2)(4,),注意到函数yx22x8在(4,)上单调递增,由复合函数的单调性知,f(x)ln(x22x8)的单调递增区间是(4,)3若函数f(x)x2a|x|2,xr在区间3,)和2,1上均为增函数,则实数a的取值范围是()ab6,4c3,2d4,3b由于f(x)为r上的偶函数,因此只需考虑函数f(x)在(0,)上的单调性即可由题意知函数f(x)在3,)上为增函数,在1,2上为减函数,故2,3,即a6,44已知函数f(x)是定义在区间0,)上的函数,且在该区间上单调递增,则满足f(2x1)f的x的取值范围是()a.bc.dd因为函数f(x)是定义在区间0,)上的增函数,满足f(2x1)f.所以02x1,解得x.5已知函数f(x)x22axa在区间(,1)上有最小值,则函数g(x)在区间(1,)上一定()a有最小值b有最大值c是减函数d是增函数d由题意知a1,若a0,则g(x)x2a在(1,)上单调递增;若0a1,g(x)x2a在(,)上单调递增,则g(x)在(1,)上单调递增综上可得,g(x)x2a在区间(1,)上是增函数故选d.二、填空题6函数f(x)的值域为_,因为所以2x4,所以函数f(x)的定义域为2,4又y1,y2在区间2,4上均为减函数,所以f(x)在2,4上为减函数, 所以f(4)f(x)f(2),即f(x).7若f(x)是定义在r上的减函数,则a的取值范围是_由题意知,解得所以a.8(2019唐山模拟)设函数f(x)g(x)x2f(x1),则函数g(x)的递减区间是_0,1)由题意知g(x)函数图像如图所示,其递减区间是0,1)三、解答题9已知f(x)(xa)(1)若a2,试证f(x)在(,2)上单调递增;(2)若a0且f(x)在(1,)上单调递减,求实数a的取值范围解(1)证明:设x1x22,则f(x1)f(x2).因为(x12)(x22)0,x1x20,所以f(x1)f(x2)0,即f(x1)f(x2),所以f(x)在(,2)上单调递增(2)设1x1x2,则f(x1)f(x2).因为a0,x2x10,所以要使f(x1)f(x2)0,只需(x1a)(x2a)0恒成立,所以a1.综上所述,实数a的取值范围是(0,110已知函数f(x)x2a|x2|4.(1)当a2时,求f(x)在0,3上的最大值和最小值;(2)若f(x)在区间1,)上单调递增,求实数a的取值范围解(1)当a2时,f(x)x22|x2|4当x0,2时,1f(x)0,当x2,3时,0f(x)7,所以f(x)在0,3上的最大值为7,最小值为1.(2)因为f(x)又f(x)在区间1,)上单调递增,所以当x2时,f(x)单调递增,则2,即a4.当1x2时,f(x)单调递增,则1.即a2,且42a2a442a2a4恒成立,故实数a的取值范围为4,21函数f(x)满足f(x2)3f(x),且xr,若当x0,2时,f(x)x22x2,则当x4,2时,f(x)的最小值为()a.b cda因为f(x2)3f(x),所以f(x)f(x2)f(x4)因为当x0,2时,f(x)x22x2,所以当x4,2,即x40,2时,f(x)f(x4)(x3)2,故当x3时,f(x)取得最小值,故选a.2定义新运算:当ab时,aba;当ab时,abb2,则函数f(x)(1x)x(2x),x2,2的最大值等于()a1b1 c6d12c由题意知当2x1时,f(x)x2,当1x2时,f(x)x32,又f(x)x2,f(x)x32在相应的定义域内都为增函数,且f(1)1,f(2)6,f(x)的最大值为6.3已知f(x)不等式f(xa)f(2ax)在a,a1上恒成立,则实数a的取值范围是_(,2)二次函数y1x24x3的对称轴是x2,该函数在(,0上单调递减,x24x33,同样可知函数y2x22x3在(0,)上单调递减,x22x33,f(x)在r上单调递减,由f(xa)f(2ax)得到xa2ax,即2xa,2xa在a,a1上恒成立,2(a1)a,a2,实数a的取值范围是(,2)4设函数f(x)ax2bx1(a,br),f(x)(1)若f(1)0,且对任意实数x均有f(x)0成立,求f(x)的解析式;(2)在(1)的条件下,当x2,2时,g(x)f(x)kx是单调函数,求实数k的取值范围解(1)f(1)0,ba1.由f(x)0恒成立,知a0且方程ax2bx10中的b24a(a1)24a(a1)20,a1,即b2.从而f(x)x22x1.f(x)(2)由(1)可知f(x)x22x1,g(x)f(x)kxx2(2k)x1,由g(x)在2,2上是单调函数,知2或2,得k2或k6.即实数k的取值范围为(,26,)1函数f(x)的定义域为d,若对于任意x1,x2d,当x1x2时,都有f(x1)f(x2),则称函数f(x)在d上为非减函数设函数f(x)在0,1上为非减函数,且满足以下三个条件:f(0)0;f f(x);f(1x)1f(x)则f f _.由,令x0,可得f(1)1.由,令x1,可得f f(1).令x,可得f f .由结合f ,可知f ,令x,可得f f ,因为且函数f(x)在0,1上为非减函数,所以f ,所以f f .2已知定义在区间(0,)上的函数f(x)满足f f(x1)f(x2),且当x1时,f(x)0,代入得f(1)f(x1)f(x1)0,故f(1)0.(2)证明:任取x1,x2(0,),且x1x2,则1,当x1时,f(x)0,f 0,即f(x1)f(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论