




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3探索三角形全等的条件(1)教学目标: 1.掌握三角形全等的“边边边”条件,了解三角形的稳定性.2.经历探索三角形全等条件的过程,体会利用画图、操作、归纳获得数学结论的过程,初步形成解决问题的基本策略. 3.在探索三角形全等条件及其应用过程中,能够进行有条理的思考并进行简单的推理,体会分类讨论的数学思想和由特殊到一般的思维方法在数学中的应用. 教学重点与难点:重点:三角形全等条件的探索过程和利用三角形全等的“边边边”条件证明两个三角形全等难点:利用“sss”说明三角形全等的思考和推理过程教学过程:第一环节复习旧知1、已知:如图1,oad与obc全等,请用式子表示出这种关系: . 找出对应边,它们有什么关系?(口答) 对应边: 找出对应角,它们有什么关系? (口答) 对应角: 如果a=35,d=75,那么cob= 2、如图,如果ade cbf,那么aecf吗? (口答“是”或“不是”)第二环节探究活动1.思考:要画一个三角形与小明画的三角形全等,需要几个与边或角的大小有关的条件呢?一个条件够吗?两个条件呢?还是要三个条件呢?2.做一做:(1)如果只给一个条件(一条边或一个角)画三角形时,大家画出的三角形一定全等吗?(2)给出两个条件画三角形时,有几种可能的情况?每种情况下画出的三角形一定全等吗?分别按照下面的条件做一做。三角形的一个内角为30,一条边为3cm;三角形的两个内角分别为30和60;三角形的两条边分别为4cm,6cm.结论:只给出一个条件或两个条件时,都不能保证所画出的三角形一定全等。3.议一议如果给出三个条件时,又会怎样呢?有几种情况?(学生讨论、交流)4.做一做(1)已知三角形的三个角分别为40、60和80,你能画出这个三角形吗?把你画出的三角形与同伴画的进行比较,它们一定全等吗?小结:三个内角分别相等的两个三角形不一定全等。(2)已知三角形的三条边分别为4cm,5cm,7cm画三角形,把你画的三角形与同伴画出的进行比较,它们一定全等吗?小结:三边对应相等的两个三角形全等,简写为“边边边”或“sss”。符号语言: 第三环节知识运用,巩固提升1.例:如图,ab=dc,ac=db,abc和dcb是否全等?试说明理由。2.练一练:已知:如图,ac=ad,bc=bd求证:acbadb.第四环节拓展延伸,深化认知 准备若干长度适中的小木条,用其中三根木条钉成一个三角形的框架,它的形状和大小是固定的吗?如果用四根小木条钉成的框架,形状和大小固定吗? 由上面的结论可知:只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了。图1是用三根木条钉成的一个三角形框架,它的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性。图2是用四根木条钉成的框架,它的形状是可以改变的,因此,四边形具有不稳定性。讨论交流:(1)同学们能举出一些生活中应用三角形的稳定性的例子吗? (2)三角形为什么具有稳定性?第五环节课堂检测1. 下列物品不是利用三角形稳定性的是( )a.自行车的三角形车架 b.三角形房架 c. 照相机的三脚架 d.放缩尺2 .判定两个三角形全等,依定义必须满足( )a. 三边对应相等 b. 三个角对应相等 c.三边对应相等和三个角对应相等 d.不能确定3.如图,已知ab=ac,要使abdadc,还需要添加一个条件,你添加的条件是 。(不添加辅助线)4.如图,当ab=cd,bc=da时,图中的abc与cda是否全等?并说明理由。5.如图,ab=cd,ac=bd,那么a=d吗?试说明理由.6.问题解决如图,仪器abcd可以用来平分一个角,其中ab=ad,bc=dc,将仪器上的点a与prq的顶点r重合,调整ab和ad,使它们落在角的两边上,沿ac画一条射线ae,ae就是prq的平分线。你能说明其中的道理吗?第六环节反思小结,提炼规律 通过本节课的学习,你学会什么?还有什么疑惑?3探索三角形全等的条件(2)教学目标:1.经历探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形的“角边角”“角角边”的条件;3.在探索三角形全等条件及其运用的过程,能够进行有条理的思考并进行简单的推理。重点:掌握三角形的“角边角”“角角边”,并能应用它们来判定两个三角形是否全等。难点:能够有条理的思考和理解简单的推理过程,并运用数学语言说明问题。教学过程:第一环节知识回顾1. 判断两个三角形全等需要 个条件,我们学过的判定方法叫 ,文字叙述是 。2. 如图,在abc中,abac,ad是bc边上的中线,ad能平分bac吗?你能说明理由吗? 解:ad平分bac。 ad是bc边上的中线(已知) (中线的定义)在 中 ( )badcad( )ad平分bac( )第二环节情景导入1. 议一议 小明踢球时不慎把一块三角形玻璃打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形玻璃呢?如果可以带哪块去合适呢?为什么?2. 思考我们知道:如果给出一个三角形三条边的长度,那么因此得到的三角形都是全等的。那么如果已知一个三角形的两个角和一条边,那么这两个角与这条边的位置上有几种可能的情况呢?每种情况下得到的三角形都全等吗?第三环节新知探究探究一:两角及其夹边如果“两角及一边”条件中的边是两角所夹的边,比如三角形的两个内角分别是60和80,它们所夹的边为2cm,你能画出这个三角形吗?你画的三角形与同伴画的一定全等吗?结论: 对应相等的两个三角形全等;(简写成 或 )探究二:两角及一角对边如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60和45,一条边长为10cm,情况会怎样呢? 如果角60所对的边为10cm,你能画出这个三角形吗?如果角45所对的边为10cm,那么按这个条件画出的三角形都全等吗?结论: 对应相等的两个三角形全等;(简写成 或 )几何语言: 。第四环节巩固提高1. 想一想:如图,ab与cd相交于点o,o是ab的中点,a=b,aoc与bod全等吗?为什么?2.练一练:如图,已知ac与bd交于点o,adbc,且aooc,你能说明bo=do吗?证明:adbc(已知) a= ,( )d= ,( ) 在 中, ( )bo=do( )第五环节课堂测评1.如图,在abc中,adbc,d为bc边中点,那么以下结论不正确的是() a abdacdb bcc ad平分bacdabc是等边三角形2.如图,be=cf,ad,abcdef,acb=55则f( )a45b55c35d652. 如图acbdfe,bc=ef,要使abcdef。若用asa证明,则需添加的条件是 ;若用aas证明,则需添加的条件是 。(写出一个即可,不添加辅助线)4.如图:已知abac,bc,abd与ace全等吗?为什么?5.如图,bc,ad平分bac,你能证明abdacd?若bd3cm,则cd有多长?6.思考题:如图,ab/cd,ad/bc,那么ab=cd吗?为什么?ad与bc呢?第六环节课堂小结本节课的学习你有哪些收获?3探索三角形全等的条件(3)【教学目标】知识技能目标通过分组画图比较,得出sas的结论,培养学生思维的全面性,能够利用全等条件判定两个三角形全等并会用数学语言说明理由.过程性目标让学生在活动过程中,发展合作交流能力和语言表达能力.情感态度目标在解决问题中发现问题,通过虚心交流解决问题,互相启发,互相受益,在活动过程中体会结论的客观真实性,感受数学与现实生活的密切联系,增强学生的数学应用意识,初步培养学生依据已知结论分析问题、解决问题的良好习惯.【重点难点】重点:能用“sas”说明两三角形全等.难点:理解“两边及其一边的对角相等”不能成为判定三角形全等的条件.【教学过程】一、创设情境复习提问.判断三角形全等的方法有几种,分别用语言加以描述.二、探究归纳1.分类研究通过小组讨论,明确两边及一角的情况,就此三个条件找出分为两类,并对每类的情况进行解释说明.2.画图比较活动内容:1.按要求画图:已知两边分别为2.5厘米、3.5厘米,它们的夹角为40.分小组画图,鼓励学生利用量角器、直尺、三角板等一切工具画三角形,并要求画出的三角形尽可能准确,减少误差.2.按要求作图:以2.5厘米,3.5厘米为边,以2.5厘米的边所对的角为40.分小组画图,要求同1.3.合作学习活动内容:1.(1)学生根据各小组所画的图形,剪下后对比分析,看图形是否完全重合.(2)通过对比、交流,最终对研究的问题作出决策.(3)总结结论,培养语言表达能力.2.小组内合作探究,剪下所画图形后对比分析图形是否全等,并互相补充产生这种情况的原因.例1分别找出各题中的全等三角形,说明理由.例2小明做了一个如图所示的风筝,其中edh=fdh,de=fd.将上述条件标注在图中,小明不用测量就能知道eh=fh吗?与同伴交流.三、交流反思学生畅所欲言,表达这节课的学习感受,总结收获、体会.教师总结.四、检测反馈1.在abc中,ab=ac,ad是bac的平分线.那么bd与cd相等吗?为什么?2.如图,已知ab=ac,ad=ae.那么b与c相等吗?为什么?3.如图,b=e,ab=ef,bd=ec,那么abc与fed全等吗?为什么?acfd吗?为什么?五、布置作业课本p104习题4.8第1,2题六、板书设计边角边定理例题:七、教学反思1.相信学生并为学生提供充分展示自己的机会通过小组合作画图的过程,为学生提供展示自己聪明才智的机会,并且在此过程中更利于教师发现学生分析问题解决问题的独到见解,以及思维的误区,以便指导
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度设备租赁合同范本
- 以智能化为核心提升农业现代化管理水平方案
- 2025年医保局遴选公务员面试预测题及答案
- 2025新能源汽车租赁合同
- 2025年工程维修岗试题及答案
- 2025年军工能源管理体系人员应聘面试模拟题及答案
- 六年级日记给妈妈过生日650字9篇
- 2025年甘肃省天水市国家公务员公共基础知识模拟题(附答案)
- 2025年副高儿科护理试题及答案
- 2025年戒毒所医生招聘笔试高频错题及答案
- 初中数学-综合与实践 哪一款“套餐”更合适教学课件设计
- 采油采气井控题库
- “三重一大”决策 标准化流程图 20131017
- 精选浙江省普通高中生物学科教学指导意见(2023版)
- “魅力之光”核电知识竞赛试题答案(二)(110道)
- 外科学课件:食管癌
- 汽机专业设备运行日常点检
- GB/T 2820.12-2002往复式内燃机驱动的交流发电机组第12部分:对安全装置的应急供电
- 设备基础知识-动设备课件
- GB/T 12599-2002金属覆盖层锡电镀层技术规范和试验方法
- 2023年西安陕鼓动力股份有限公司招聘笔试题库及答案解析
评论
0/150
提交评论