波利亚“怎样解题”表在解题中的应用.doc_第1页
波利亚“怎样解题”表在解题中的应用.doc_第2页
波利亚“怎样解题”表在解题中的应用.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

波利亚“怎样解题”表在解题中的应用著名数学家波利亚认为中学数学教育的根本宗旨是教会年轻人思考,他把“解题”作为培养学生数学才能和教会他们思考的一种手段和途径他专门研究解题的思维过程,分解解题的思维过程得到一张“怎样解题”表:3第一步:理解题目1已知是什么?未知是什么?要确定未知数,条件是否充分?2画张图,将已知标上 3引入适当的符号4把条件的各个部分分开第二步:拟定方案1你能否转化成相似的、熟悉的问题?2你能用自己的语言重新叙述问题?3回到定义去4你能否解决问题的一部分?5你是否利用了所有的条件? 第三步:执行方案 1勇敢地写出你的方法 2你能否说出你写的每一步的理由? 第四步:回顾1你能否一眼就看出结论?2你能否用别的方法导出这个结论?3你能否把这个题目或这种方法用于解决其他的问题? 下面,我们就按“怎样解题”中的步骤来分析两个例题的解题过程:例1:已知函数f(x)=mx3x的图象上,以N(1,n)为切点的切线的倾斜角为, (1)求m,n的值; (2)是否存在最小的正整数k,使得不等式f(x)k1991对于x1,3恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由; (3)求证:|f(sinx)f(cosx)|2f(t)(xR,t0)理解题目:函数f(x)=mx3x,以点N(1,n)为切点的切线的倾斜角为 解:(1) f(x)=3mx21,依题意,得tan,即1=3m1,m=,n=拟定方案:对f(x)求导,由x=1处的导数等于1,算 出m,再根据n=f(1)算出n先求出f(x)于1,3 上的最大值,k就易得到由求证的不等式知,只要证明|f(sinx)f(cosx)|的最大值小于2f(t)(t0)的最小值即可 (2)令f(x)=2x21=0,得x=当1x0;当x0 f(1)=,f()=,f()=,f(3)=15因此,当x1,3时f(x)15;要使不等式f(x)k1991对于x1,3恒成立,使不得等式f(x)k1991对于x1,3恒成立必须:k2006所以,存在最小的正整数k=2006,执行方案:对|f(sinx)f(cosx)|的最大值,有两种方法:(a)将x=sinx和x=cosx代入f(x),整理得出|f(sinx)f(cosx)| 的表达式,再 利用三角 函数的性质求最大值(b)由绝对值不等式得:|f(sinx)f(cosx)|f(sinx)|f(cosx)|,再利用f(x)的单调性得:|f(sinx)| ,|f(cosx)|,最大值容易算出2f(t)(t0)的最小值也有两种方法:(a)t0,t2f(t)=2(t)(t21)1 (b)利用t 及f(x)于1,上递增,也能求出最小值 (3)(法一)|f(sinx)f(cosx)|=|(sin3xsinx)(cos3xcosx)|=|(sin3xcos3x)(sinxcosx)|=|(sinxcosx)(sin2xsinxcosxcos2x)1|=|sinxcos|x|sinxcosx|=|sinx+cosx|3=|3综上可得,|f(sinx)f(cosx)|2f(t)(xR,t0)2f(t)=2(t)(t21)1又t0,t (法2)由(2)知,函数f(x)在1,上是增函数;在,上是减函数;在,1上是增函数;综上可得,|f(sinx)f(cosx)|2f(t)(xR,t0)所以,当x1,1时,f(x),即|f(x)|sinx,cosx1,1,|f(sinx)| ,|f(cosx)|f(sinx)f(cosx)| |f(sinx)|f(cosx)| 又t0t且函数f(x)在上是增函数,2f(t)2f()=2()3=又f(1)=, 回顾:检验每一步的正确性及所得结果,有没其它解法?仔细分析波利亚的怎样解题表,不难发现:将解题的思维过程的分解为四个过程,把它们告诉学生,引导学生按照这五个思维过程,在解题过程中,有意识地调控他们自己的思维活动,这是提高学生的思维品质的一个有效途径学生这种对自身学习活动和思维过程的认知和调控能力,实际上就是心理学上的元认知能力简单的说,元认知是对认知的认知教师在教学过程中,引导学生了解元认知知识,经历元认知体验,学会元认知监控,对学生数学思维能力的发展是十分重要的从元认知的角度来讲,波利亚“怎样解题”表至少有以下价值:(1)发展学生的数学思维能力,提高学生的思维品质,或通俗一点,就是教会学生去思考(2)向学生传授元认知的知识,发展元认知策略(3)给学生提供元认知体验

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论