




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料范本2019-2020学年高中数学课时作业抛物线的简单几何性质新人教A版选修编 辑:_时 间:_课时作业13抛物线的简单几何性质|基础巩固|(25分钟.60分)一、选择题(每小题5分.共25分)1过点(2,4)作直线l.与抛物线y28x只有一个公共点.这样的直线l有()A1条B2条C3条 D4条解析:可知点(2,4)在抛物线y28x上.过点(2,4)与抛物线y28x只有一个公共点的直线有两条.一条是抛物线的切线.另一条与抛物线的对称轴平行答案:B2过抛物线x24y的焦点.作直线l交抛物线于P1(x1.y1).P2(x2.y2)两点.若y1y26.则|P1P2|()A5 B6C8 D10解析:抛物线x24y的准线为y1.因为P1(x1.y1).P2(x2.y2)两点是过抛物线焦点的直线l与抛物线的交点.所以P1(x1.y1).P2(x2.y2)两点到准线的距离分别是y11.y21.所以|P1P2|y1y228.答案:C3设O为坐标原点.F为抛物线y24x的焦点.A为抛物线上一点.若4.则点A的坐标为()A(2.2) B(1.2)C(1,2) D(2,2)解析:设A(x.y).则y24x.又(x.y).(1x.y).所以xx2y24.由可解得x1.y2.答案:B4直线yxb交抛物线yx2于A.B两点.O为抛物线顶点.OAOB.则b的值为()A1 B0C1 D2解析:设A(x1.y1).B(x2.y2).将yxb代入yx2.化简可得x22x2b0.故x1x22.x1x22b.所以y1y2x1x2b(x1x2)b2b2.又OAOB.所以x1x2y1y20.即2bb20.则b2或b0.经检验b0时.不满足OAOB.故b2.答案:D5设F为抛物线C:y23x的焦点.过F且倾斜角为30的直线交C于A.B两点.O为坐标原点.则OAB的面积为()A. B.C. D.解析:易知抛物线中p.焦点F.直线AB的斜率k.故直线AB的方程为y.代入抛物线方程y23x.整理得x2x0.设A(x1.y1).B(x2.y2).则x1x2.由抛物线的定义可得弦长|AB|x1x2p12.结合图象可得O到直线AB的距离dsin30.所以OAB的面积S|AB|d.答案:D二、填空题(每小题5分.共15分)6过抛物线y24x的焦点作直线交抛物线于点A(x1.y1).B(x2.y2).若|AB|7.则AB的中点M到抛物线准线的距离为_解析:抛物线的焦点为F(1,0).准线方程为x1.由抛物线的定义知|AB|AF|BF|x1x2x1x2p.即x1x227.得x1x25.于是弦AB的中点M的横坐标为.因此.点M到抛物线准线的距离为1.答案:7如图.过抛物线y22px(p0)的焦点F的直线交抛物线于点A.B.交其准线l于点C.若|BC|2|BF|.且|AF|3.则此抛物线的方程为_解析:如图.分别过A.B作AA1l于A1.BB1l于B1.由抛物线的定义知:|AF|AA1|.|BF|BB1|.因为|BC|2|BF|.所以|BC|2|BB1|.所以BCB130.所以AFx60.连接A1F.则AA1F为等边三角形.过F作FF1AA1于F1.则F1为AA1的中点.设l于x轴于K.则|KF|A1F1|AA1|AF|.即p.所以抛物线方程为y23x.答案:y23x8过抛物线x22py(p0)的焦点F作倾斜角为30的直线.与抛物线分别交于A.B两点(点A在y轴左侧).则_.解析:由题意可得焦点F.故直线AB的方程为yx.与x22py联立得A.B两点的横坐标为xAp.xBp.故A.B.所以|AF|p.|BF|2p.所以.答案:三、解答题(每小题10分.共20分)9等腰直角三角形的直角顶点位于坐标原点.另外两个顶点在抛物线y22px(p0)上若该三角形的斜边长为4.求抛物线的方程解析:如图.设等腰直角三角形OAB的顶点A.B在抛物线上根据抛物线的性质知A.B关于x轴对称由题意得A(2,2)在抛物线y22px上.所以p1.抛物线的方程为y22x.10已知抛物线y26x.过点P(4,1)引一弦.使它恰在点P被平分.求这条弦所在的直线方程解析:设弦的两个端点为P1(x1.y1).P2(x2.y2)P1.P2在抛物线上.y6x1.y6x2.两式相减得(y1y2)(y1y2)6(x1x2)y1y22.代入得k3.直线的方程为y13(x4).即3xy110.|能力提升|(20分钟.40分)11已知直线yk(x2)(k0)与抛物线C:y28x相交于A.B两点.F为C的焦点.若|FA|2|FB|.则k的值为()A. B.C. D.解析:设抛物线C:y28x的准线为l:x2.直线yk(x2)(k0)恒过定点P(2,0).如图过A.B分别作AMl于M.BNl于N.由|FA|2|FB|.则|AM|2|BN|.点B为AP的中点.连接OB.则|OB|FA|.所以|OB|BF|.点B的横坐标为1.故点B的坐标为(1,2).把B点坐标代入直线方程得k的值为.答案:C12平面直角坐标系xOy中.双曲线C1:1(a0.b0)的渐近线与抛物线C2:x22py(p0)交于点O.A.B. 若OAB的垂心为C2的焦点.则C1的离心率为_解析:由题意.双曲线的渐近线方程为yx.抛物线的焦点坐标为F.不妨设点A在第一象限.由解得或故A.所以kAF.因为F为OAB的垂心.所以直线AF与另一条渐近线垂直.故kAF()1.即1.整理得b2a2.所以c2a2b2a2.故ca.即e.答案:13已知直线l经过抛物线y24x的焦点F.且与抛物线相交于A.B两点(1)若|AF|4.求点A的坐标;(2)求线段AB的长的最小值解析:由y24x.得p2.其准线方程为x1.焦点F(1,0)设A(x1.y1).B(x2.y2)(1)由抛物线的定义可知.|AF|x1.从而x1413.代入y24x.解得y12.点A的坐标为(3,2)或(3.2)(2)当直线l的斜率存在时.设直线l的方程为yk(x1)与抛物线方程联立.得消去y.整理得k2x2(2k24)xk20.直线与抛物线相交于A.B两点.则k0.并设其两根为x1.x2.x1x22.由抛物线的定义可知.|AB|x1x2p44.当直线l的斜率不存在时.直线l的方程为x1.与抛物线相交于A(1,2).B(1.2).此时|AB|4.|AB|4.即线段AB的长的最小值为4.14点M(m,4)(m0)为抛物线x22py(p0)上一点.F为其焦点.已知|FM|5.(1)求m与p的值;(2)以M点为切点作抛物线的切线.交y轴于点N.求FMN的面积解析:(1)由抛物线定义知.|FM|45.所以p2.所以抛物线的方程为x24y.又由M(m,4)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咖啡线下活动策划方案(3篇)
- 清除路肩杂草施工方案(3篇)
- 培训机构声乐活动策划方案(3篇)
- 员工进场考试题库及答案
- 安全专项考试题库及答案
- 北京市门头沟区2023-2024学年九年级上学期第一次月考历史题目及答案
- 北京市昌平区2024-2025学年八年级下学期第二次月考英语考试题目及答案
- 新村干面试题目及答案
- 写作大赛考试题目及答案
- 七夕节传说初中作文800字14篇
- 2025年6月浙江省高考地理试卷真题(含答案解析)
- CCU护士进修出科汇报
- 解表药白芷讲课件
- 人行金库管理制度
- 供应链管理 课件 6-供应链生产管理
- 2025版权转让合同模板
- 口腔科台账护理工作规范
- T/CUWA 60054-2023饮用水纳滤阻垢剂性能试验方法
- 退兵移交协议书范本
- 经营管理岗位竞聘
- 玻璃吊装免责协议合同
评论
0/150
提交评论