2020高考数学理二轮课标通用专题能力训练:函数与方程及函数的应用含解析.docx_第1页
2020高考数学理二轮课标通用专题能力训练:函数与方程及函数的应用含解析.docx_第2页
2020高考数学理二轮课标通用专题能力训练:函数与方程及函数的应用含解析.docx_第3页
2020高考数学理二轮课标通用专题能力训练:函数与方程及函数的应用含解析.docx_第4页
2020高考数学理二轮课标通用专题能力训练:函数与方程及函数的应用含解析.docx_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料范本2020高考数学理二轮课标通用专题能力训练:函数与方程及函数的应用含解析编 辑:_时 间:_6函数与方程及函数的应用专题能力训练第18页一、能力突破训练1.f(x)=-+log2x的一个零点落在下列哪个区间()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:由题意,得f(x)单调递增,f(1)=-10,所以f(x)=-+log2x的零点落在区间(1,2)内.2.设函数f(x)的零点为x1,函数g(x)=4x+2x-2的零点为x2.若|x1-x2|,则f(x)可以是()A.f(x)=2x-B.f(x)=-x2+x-C.f(x)=1-10xD.f(x)=ln(8x-2)答案:C解析:依题意得g-20,则x2若f(x)=1-10x,则有x1=0,此时|x1-x2|,故选C.3.已知函数f(x)=3x+x,g(x)=log3x+x,h(x)=sin x+x的零点依次为x1,x2,x3,则下列结论正确的是()A.x1x2x3B.x1x3x2C.x3x1x2D.x2x3x1答案:B解析:在同一平面直角坐标系中画出y=3x,y=log3x,y=sin x与y=-x的图象,如图所示,可知x10,x3=0,则x1x3x2.4.已知M是函数f(x)=e-2|x-1|+2sin在区间-3,5上的所有零点之和,则M的值为()A.4B.6C.8D.10答案:C解析:因为f(x)=e-2|x-1|+2sin=e-2|x-1|-2cos x,所以f(x)=f(2-x).因为f(1)0,所以函数零点有偶数个,且两两关于直线x=1对称.当x1,5时,函数y=e-2(x-1)(0,1,且单调递减;函数y=2cos x-2,2,且在区间1,5上有两个周期,因此当x1,5时,函数y=e-2(x-1)与y=2cos x有4个不同的交点;从而所有零点之和为42=8,故选C.5.已知函数f(x)=ex+2(x0)与g(x)=ln(x+a)+2的图象上存在关于y轴对称的点,则a的取值范围是()AB.(-,e)CD答案:B解析:由题意,得方程f-g=0在区间(0,+)内有解,即e-x+2-ln(x+a)-2=0在区间(0,+)内有解,即函数y=e-x的图象与y=ln(x+a)的图象在区间(0,+)内有交点,把点(0,1)代入y=ln(x+a),得1=ln a,解得a=e,故ae.6.(20xx全国,理15)函数f(x)=cos在区间0,上的零点个数为.答案:3解析:令f(x)=cos=0,得3x+k,kZ,x=,kZ.则在区间0,上的零点有故有3个.7.已知e是自然对数的底数,函数f(x)=ex+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则f(a),f(1),f(b)的大小关系为.答案:f(a)f(1)0恒成立,则函数f(x)在R上是单调递增的,因为f(0)=e0+0-2=-10,所以函数f(x)的零点a(0,1).由题意,知g(x)=+10,则函数g(x)在区间(0,+)内是单调递增的.又g(1)=ln 1+1-2=-10,则函数g(x)的零点b(1,2).综上,可得0a1b2.因为f(x)在R上是单调递增的,所以f(a)f(1)100,A商品的价格为100元.0.9500=450,B商品的价格为500元.当x=100+500=600时,y=100+0.7600=520,即若丙一次性购买A,B两件商品,则应付款520元.9.已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.解:(1)g(x)=+2=+2,因为|x|0,所以01,即20时,由2x-2=0整理,得(2x)2-22x-1=0,(2x-1)2=2,解得2x=1因为2x0,所以2x=1+,即x=log2(1+).10.如图,一个长方体形状的物体E在雨中沿面P(面积为S)的垂直方向做匀速移动,速度为v(v0),雨速沿E移动方向的分速度为c(cR).E移动时单位时间内的淋雨量包括两部分:P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与|v-c|S成正比,比例系数为;其他面的淋雨量之和,其值为记y为E移动过程中的总淋雨量.当移动距离d=100,面积S=时,(1)写出y的表达式;(2)设0v10,00).(2)由(1)知,当0vc时,y=(3c-3v+10)=-15;当cv10时,y=(3v-3c+10)=+15.故y=当0c时,y是关于v的减函数.故当v=10时,ymin=20-当c5时,在区间(0,c上,y是关于v的减函数;在区间(c,10上,y是关于v的增函数.故当v=c时,ymin=二、思维提升训练11.如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N.若方程f(g(x)=0,g(f(x)=0的实根个数分别为m,n,则m+n=()A.18B.16C.14D.12答案:A解析:由题中图象知,f(x)=0有3个根0,a,b,且a(-2,-1),b(1,2);g(x)=0有3个根0,c,d,且c(-1,0),d(0,1).由f(g(x)=0,得g(x)=0或a,b,由图象可知g(x)所对每一个值都能有3个根,因而m=9;由g(f(x)=0,知f(x)=0或c,d,由图象可以看出f(x)=0时对应有3个根,f(x)=d时有4个,f(x)=c时只有2个,加在一起也是9个,即n=9,m+n=9+9=18,故选A.12.已知函数f(x)=函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为()A.2B.3C.4D.5答案:A解析:因为f(x)=所以f(2-x)=即f(2-x)=f(x)+f(2-x)=所以函数y=f(x)-g(x)=f(x)-3+f(2-x)=其图象如图所示.显然函数图象与x轴有2个交点,故函数有2个零点.13.已知函数f(x)=ln x-+a有唯一的零点x0,且x0(2,3),则实数a的取值范围是 .答案:解析:令f(x)=0,得ln x=-a.在同一平面直角坐标系中分别作出y=ln x与y=-a的图象知,y=ln x为增函数,而y=-a为减函数.要使两函数图象交点的横坐标落在区间(2,3)内,必须有解得-ln 3a-ln 2.14.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=(1)写出年利润W(单位:万元)关于年产量x(单位:千件)的函数解析式;(2)当年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大.(注:年利润=年销售收入-年总成本)解:(1)当010时,W=xR(x)-(10+2.7x)=98-2.7x.故W=(2)当00;当x(9,10时,W10时,W=98-98-2=38,当且仅当=2.7x,即x=时,W取得最大值38.综合知:当x=9时,W取得最大值38.6,故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大.15.甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付的情况下,乙方的年利润x(单位:元)与年产量q(单位:t)满足函数关系:x=2 000若乙方每生产一吨产品必须赔付甲方s元(以下称s为赔付价格).(1)将乙方的年利润w(单位:元)表示为年产量q(单位:t)的函数,并求出乙方获得最大利润的年产量;(2)在乙方年产量为q(单位:t)时,甲方每年受乙方生产影响的经济损失金额y=0.002q2(单位:元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s是多少?解:(1)因为赔付价格为s元/吨,所以乙方的实际年利润为w=2 000-sq(q0).因为w=2 000-sq=-s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论